43 research outputs found

    Struttura delle Vette Feltrine

    No full text

    Preface: Geology and information technology

    Get PDF
    n/

    Abnormal foot function in diabetic patients: the altered onset of Windlass mechanism

    No full text
    Aim The aim of this study was to examine foot function in the presence of diabetes-induced alterations of the anatomical and biomechanical unit formed by the Achilles tendon, plantar fascia and metatarso-phalangeal joints. More specifically, we focused on the Windlass mechanism, the physiological mechanism which entails stiffening of the foot during propulsion. Methods Sixty-one diabetic patients, with or without neuropathy, and 21 healthy volunteers were recruited. The thickness of Achilles tendon and plantar fascia was measured by ultrasound. The main biomechanical parameters of foot-floor interaction during gait were acquired by means of dedicated platforms. The range of motion of the 1st metatarso-phalangeal joint was measured passively. Results The plantar fascia (PF) and Achilles tendon (AT) were significantly thickened in diabetic patients [control subjects: PF 2.0 +/- 0.5 mm, AT 4.0 +/- 0.5 mm; diabetic patients without neuropathy: PF 2.9 +/- 1.2 mm (P = 0.002), AT 4.6 +/- 1.0 mm (P = 0.016); diabetic patients with neuropathy: PF 3.0 +/- 0.8 mm (P < 0.0001), AT 4.9 +/- 1.7 mm (P = 0.026)]. Joint mobility was significantly reduced [control subjects: 100.0 +/- 10.0 degrees; diabetic patients without neuropathy: 54.0 +/- 29.4 degrees (P < 0.0001); diabetic patients with neuropathy: 54.9 +/- 17.2 degrees (P < 0.0001)]. Loading times and force integrals under the heel and the metatarsals increased [metatarsal loading time (% stance phase): control subjects 88.2 +/- 4.1%; diabetic patients without neuropathy 90.1 +/- 4.7% (P = 0.146); diabetic patients with neuropathy 91.7 +/- 6.6% (P = 0.048)]. Conclusions Increased thickness of Achilles tendon and plantar fascia, more evident in the presence of neuropathy, may contribute to an overall increase of tensile force and to the occurrence of an early Windlass mechanism, maintained throughout the whole gait cycle. This might play a significant role in the overall alteration of the biomechanics of the foot-ankle complex

    Does the thickening of Achilles tendon and plantar fascia contribute to the alteration of diabetic foot loading?

    No full text
    Background. The diabetic foot often undergoes abnormal plantar pressures, changing in walking strategy, ulcerative processes. The present study focuses on the effects that diabetes-induced alterations of Achilles tendon, plantar fascia and first metatarsophalangeal joint-both anatomical and functional-may have on foot loading. Methods. Sixty-one diabetic patients, with or without neuropathy, and 21 healthy volunteers were recruited. Thickness of Achilles tendon and plantar fascia was measured by ultrasound. Flexion-extension of the first metatarso-phalangeal joint was measured passively. Main biomechanic parameters of foot floor interaction during gait were acquired and related to the above measurements. Findings. Plantar fascia and Achilles tendon were significantly (P < 0.05) thicker in diabetics than in controls; mean values (SD) for controls, diabetics without and with neuropathy were 2.0 mm (0.5), 2.9 mm (1.2) and 3.0 mm (0.8) for plantar fascia, respectively, and 4.0 mm (0.5), 4.6 mm (1.0) and 4.9 mm (1.7) for Achilles tendon, respectively. Flexion-extension of the first metatarso-phalangeal joint was significantly (P < 0.05) smaller in diabetics than in controls; mean values (SD) for controls, diabetics without and with neuropathy were 100.0&DEG; (10.0), 54.0&DEG; (29.4) and 54.9&DEG; (17.2), respectively. The increase in the vertical force under the metatarsals was strongly related (R = 0.83, explained variance = 70.1%) to the changes in the three above parameters. Interpretation. Thickening of plantar fascia and Achilles tendon in diabetics, more evident in the presence of neuropathy, concurs to develop a rigid foot, which poorly absorbs shock during landing (performs the physiological impact force absorption during landing). More generally, an overall alteration of the foot-ankle complex motion likely occurs throughout the whole gait cycle, which partly explains the abnormal loading under the forefoot. © 2005 Elsevier Ltd. All rights reserved
    corecore