263 research outputs found

    Mapping the kinetic Sunyaev-Zel'dovich effect toward MACS J0717.5+3745 with NIKA

    Get PDF
    Measurement of the gas velocity distribution in galaxy clusters provides insight into the physics of mergers, through which large scale structures form in the Universe. Velocity estimates within the intracluster medium (ICM) can be obtained via the Sunyaev-Zel'dovich (SZ) effect, but its observation is challenging both in term of sensitivity requirement and control of systematic effects, including the removal of contaminants. In this paper we report resolved observations, at 150 and 260 GHz, of the SZ effect toward the triple merger MACS J0717.5+3745 (z=0.55), using data obtained with the NIKA camera at the IRAM 30m telescope. Assuming that the SZ signal is the sum of a thermal (tSZ) and a kinetic (kSZ) component and by combining the two NIKA bands, we extract for the first time a resolved map of the kSZ signal in a cluster. The kSZ signal is dominated by a dipolar structure that peaks at -5.1 and +3.4 sigma, corresponding to two subclusters moving respectively away and toward us and coincident with the cold dense X-ray core and a hot region undergoing a major merging event. We model the gas electron density and line-of-sight velocity of MACS J0717.5+3745 as four subclusters. Combining NIKA data with X-ray observations from XMM-Newton and Chandra, we fit this model to constrain the gas line-of-sight velocity of each component, and we also derive, for the first time, a velocity map from kSZ data (i.e. that is model-dependent). Our results are consistent with previous constraints on the merger velocities, and thanks to the high angular resolution of our data, we are able to resolve the structure of the gas velocity. Finally, we investigate possible contamination and systematic effects with a special care given to radio and submillimeter galaxies. Among the sources that we detect with NIKA, we find one which is likely to be a high redshift lensed submillimeter galaxy.Comment: 19 pages, 9 figures, accepted in A&

    The CUORE cryostat: an infrastructure for rare event searches at millikelvin temperatures

    Full text link
    The CUORE experiment is the world's largest bolometric experiment. The detector consists of an array of 988 TeO2 crystals, for a total mass of 742 kg. CUORE is presently taking data at the Laboratori Nazionali del Gran Sasso, Italy, searching for the neutrinoless double beta decay of 130Te. A large custom cryogen-free cryostat allows reaching and maintaining a base temperature of about 10 mK, required for the optimal operation of the detector. This apparatus has been designed in order to achieve a low noise environment, with minimal contribution to the radioactive background for the experiment. In this paper, we present an overview of the CUORE cryostat, together with a description of all its sub-systems, focusing on the solutions identified to satisfy the stringent requirements. We briefly illustrate the various phases of the cryostat commissioning and highlight the relevant steps and milestones achieved each time. Finally, we describe the successful cooldown of CUORE

    Volcanic jets, plumes, and collapsing fountains: evidence from large-scale experiments, with particular emphasis on the entrainment rate

    Get PDF
    The source conditions of volcanic plumes and collapsing fountains are investigated by means of large-scale experiments. In the experiments, gas-particle jets issuing from a cylindrical conduit are forced into the atmosphere at different mass flow rates. Dense jets (high particle volumetric concentration, e.g., C 0 > 0.01) generate collapsing fountains, whose height scales with the squared exit velocity. This is consistent with Bernoulli's equation, which is a good approximation if air entrainment is negligible. In this case, kinetic energy is transformed into potential energy without any significant loss by friction with the atmosphere. The dense collapsing fountain, on hitting the ground, generates an intense shear flow similar to a pyroclastic density current. Dilute hot jets (low particle volumetric concentration, e.g., C 0 3). © 2014 Springer-Verlag Berlin Heidelberg

    CUORE: The first bolometric experiment at the ton scale for the search for neutrino-less double beta decay

    Get PDF
    The Cryogenic Underground Observatory for Rare Events (CUORE) is the most massive bolometric experiment searching for neutrino-less double beta (0νββ) decay. The detector consists of an array of 988 TeO crystals (742 kg) arranged in a compact cylindrical structure of 19 towers. This paper will describe the CUORE experiment, including the cryostat, and present the detector performance during the first year of running. Additional detail will describe the effort made in improving the energy resolution in the Te 0νββ decay region of interest (ROI) and the suppression of backgrounds. A description of work to lower the energy threshold in order to give CUORE the sensitivity to search for other rare events, such as dark matter, will also be provided. 2 13

    Refinement of Bos taurus sequence assembly based on BAC-FISH experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The sequencing of the cow genome was recently published (Btau_4.0 assembly). A second, alternate cow genome assembly (UMD2), based on the same raw sequence data, was also published. The two assemblies have been subsequently updated to Btau_4.2 and UMD3.1, respectively.</p> <p>Results</p> <p>We compared the Btau_4.2 and UMD3.1 alternate assemblies. Inconsistencies were grouped into three main categories: (i) DNA segments showing almost coincidental chromosomal mapping but discordant orientation (inversions); (ii) DNA segments showing a discordant map position along the same chromosome; and (iii) sequences present in one chromosomal assembly but absent in the corresponding chromosome of the other assembly. The latter category mainly consisted of large amounts of scaffolds that were unassigned in Btau_4.2 but successfully mapped in UMD3.1. We sampled 70 inconsistencies and identified appropriate cow BACs for each of them. These clones were then utilized in FISH experiments on cow metaphase or interphase nuclei in order to disambiguate the discrepancies. In almost all instances the FISH results agreed with the UMD3.1 assembly. Occasionally, however, the mapping data of both assemblies were discordant with the FISH results.</p> <p>Conclusions</p> <p>Our work demonstrates how FISH, which is assembly independent, can be efficiently used to solve assembly problems frequently encountered using the shotgun approach.</p

    Result on the neutrinoless double beta decay search of 82 Se with the CUPID-0 experiment

    Get PDF
    CUPID-0 is the first large array of scintillating Zn 82 Se cryogenic calorimeters (bolometers) implementing particle identification for the search of the neutrinoless double beta decay (0vββ). The detector consists of 24 enriched Zn 82 Se bolometers for a total 82 Se mass of 5.28 kg and it has been taking data in the underground LNGS (Italy) since March 2017. In this article we show how the dual read-out provides a powerful tool for the a particles rejection. The simultaneous use of the heat and light information allows us to reduce the background down to (3.2 +1.31.1 x10 -3 counts/(keV kg year), an unprecedented level for cryogenic calorimeters. In a total exposure of 5.46 kg year Zn 82 Se we set the most stringent limit on the 0vββ decay 82 Se half-life T 0v1/2 ≤ 4.0 x 10 24 year at 90% C.I

    TRAM (Transcriptome Mapper): database-driven creation and analysis of transcriptome maps from multiple sources

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several tools have been developed to perform global gene expression profile data analysis, to search for specific chromosomal regions whose features meet defined criteria as well as to study neighbouring gene expression. However, most of these tools are tailored for a specific use in a particular context (e.g. they are species-specific, or limited to a particular data format) and they typically accept only gene lists as input.</p> <p>Results</p> <p>TRAM (Transcriptome Mapper) is a new general tool that allows the simple generation and analysis of quantitative transcriptome maps, starting from any source listing gene expression values for a given gene set (e.g. expression microarrays), implemented as a relational database. It includes a parser able to assign univocal and updated gene symbols to gene identifiers from different data sources. Moreover, TRAM is able to perform intra-sample and inter-sample data normalization, including an original variant of quantile normalization (scaled quantile), useful to normalize data from platforms with highly different numbers of investigated genes. When in 'Map' mode, the software generates a quantitative representation of the transcriptome of a sample (or of a pool of samples) and identifies if segments of defined lengths are over/under-expressed compared to the desired threshold. When in 'Cluster' mode, the software searches for a set of over/under-expressed consecutive genes. Statistical significance for all results is calculated with respect to genes localized on the same chromosome or to all genome genes. Transcriptome maps, showing differential expression between two sample groups, relative to two different biological conditions, may be easily generated. We present the results of a biological model test, based on a meta-analysis comparison between a sample pool of human CD34+ hematopoietic progenitor cells and a sample pool of megakaryocytic cells. Biologically relevant chromosomal segments and gene clusters with differential expression during the differentiation toward megakaryocyte were identified.</p> <p>Conclusions</p> <p>TRAM is designed to create, and statistically analyze, quantitative transcriptome maps, based on gene expression data from multiple sources. The release includes FileMaker Pro database management runtime application and it is freely available at <url>http://apollo11.isto.unibo.it/software/</url>, along with preconfigured implementations for mapping of human, mouse and zebrafish transcriptomes.</p

    Mapping the kinetic Sunyaev-Zel'dovich effect toward MACS J0717.5+3745 with NIKA

    Get PDF
    Measurement of the gas velocity distribution in galaxy clusters provides insight into the physics of mergers, through which large scale structures form in the Universe. Velocity estimates within the intracluster medium (ICM) can be obtained via the Sunyaev-Zel’dovich (SZ) effect, but its observation is challenging both in term of sensitivity requirement and control of systematic effects, including the removal of contaminants. In this paper we report resolved observations, at 150 and 260 GHz, of the SZ effect toward the triple merger MACS J0717.5+3745 (z = 0.55), using data obtained with the NIKA camera at the IRAM 30 m telescope. Assuming that the SZ signal is the sum of a thermal (tSZ) and a kinetic (kSZ) component and by combining the two NIKA bands, we extract for the first time a resolved map of the kSZ signal in a cluster. The kSZ signal is dominated by a dipolar structure that peaks at −5.1 and +3.4σ, corresponding to two subclusters moving respectively away and toward us and coincident with the cold dense X-ray core and a hot region undergoing a major merging event. We model the gas electron density and line-of-sight velocity of MACS J0717.5+3745 as four subclusters. Combining NIKA data with X-ray observations from XMM-Newton and Chandra, we fit this model to constrain the gas line-of-sight velocity of each component, and we also derive, for the first time, a velocity map from kSZ data (i.e. that is model- dependent). Our results are consistent with previous constraints on the merger velocities, and thanks to the high angular resolution of our data, we are able to resolve the structure of the gas velocity. Finally, we investigate possible contamination and systematic effects with a special care given to radio and submillimeter galaxies. Among the sources that we detect with NIKA, we find one which is likely to be a high redshift lensed submillimeter galaxy

    MYC-containing double minutes in hematologic malignancies: evidence in favor of the episome model and exclusion of MYC as the target gene

    Get PDF
    Double minutes (dmin)-circular, extra-chromosomal amplifications of specific acentric DNA fragments-are relatively frequent in malignant disorders, particularly in solid tumors. In acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), dmin are observed in approximately 1% of the cases. Most of them consist of an amplified segment from chromosome band 8q24, always including the MYC gene. Besides this information, little is known about their internal structure. We have characterized in detail the genomic organization of 32 AML and two MDS cases with MYC-containing dmin. The minimally amplified region was shown to be 4.26 Mb in size, harboring five known genes, with the proximal and the distal amplicon breakpoints clustering in two regions of approximately 500 and 600 kb, respectively. Interestingly, in 23 (68%) of the studied cases, the amplified region was deleted in one of the chromosome 8 homologs at 8q24, suggesting excision of a DNA segment from the original chromosomal location according to the 'episome model'. In one case, sequencing of both the dmin and del(8q) junctions was achieved and provided definitive evidence in favor of the episome model for the formation of dmin. Expression status of the TRIB1 and MYC genes, encompassed by the minimally amplified region, was assessed by northern blot analysis. The TRIB1 gene was found over-expressed in only a subset of the AML/MDS cases, whereas MYC, contrary to expectations, was always silent. The present study, therefore, strongly suggests that MYC is not the target gene of the 8q24 amplifications
    corecore