81 research outputs found
Continuous glucose monitoring in patients with type 2 diabetes on hemodialysis
Diabetic kidney disease is the leading cause of end-stage kidney disease in high-income countries. The strict control of glycemic oscillations is the principal therapeutic target, but this could be hard to achieve in uremic patients due to their unpredictable insulin sensitivity. Currently, the evaluation of the glycemic profile relies on serum markers (glycated hemoglobin HbA1c, glycated albumin, and fructosamine), capillary glucose blood control (self-monitoring of blood glucose), and interstitial glucose control (continue glucose monitoring). We conducted a systematic review of published articles on continue glucose monitoring in hemodialysis patients with type 2 diabetes, which included 12 major articles. Four studies found significant fluctuations in glucose levels during hemodialysis sessions. All studies reported a higher mean amplitude of glucose variations on the hemodialysis day. Three studies agreed that continue glucose monitoring is better than glycated hemoglobin in detecting these abnormalities. Moreover, continue glucose monitoring was more accurate and perceived as easier to use by patients and their caregivers. In patients with type 2 diabetes on hemodialysis, glucose levels show different variation patterns than the patients on hemodialysis without diabetes. Considering manageability, accuracy, and cost-effectiveness, continue glucose monitoring could be the ideal diagnostic tool for the patient with diabetes on hemodialysis
Hematopoietic Stem Cells in Type 1 Diabetes
Despite the increasing knowledge of pathophysiological mechanisms underlying the onset of type 1 diabetes (T1D), the quest for therapeutic options capable of delaying/reverting the diseases is still ongoing. Among all strategies currently tested in T1D, the use of hematopoietic stem cell (HSC)-based approaches and of teplizumab, showed the most encouraging results. Few clinical trials have already demonstrated the beneficial effects of HSCs in T1D, while the durability of the effect is yet to be established. Investigators are also trying to understand whether the use of selected and better-characterized HSCs subsets may provide more benefits with less risks. Interestingly, ex vivo manipulated HSCs showed promising results in murine models and the recent introduction of the humanized mouse models accelerated the translational potentials of such studies and their final road to clinic. Indeed, immunomodulatory as well as trafficking abilities can be enhanced in genetically modulated HSCs and genetically engineered HSCs may be viewed as a novel "biologic" therapy, to be further tested and explored in T1D and in other autoimmune/immune-related disorders
A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy
T-bet plays a crucial role in Th1 development. We investigated the role of T-bet in the development of allograft rejection in an established MHC class II–mismatched (bm12 into B6) model of chronic allograft vasculopathy (CAV). Intriguingly, and in contrast to IFN-γ−/− mice that are protected from CAV, T-bet−/− recipients develop markedly accelerated allograft rejection accompanied by early severe vascular inflammation and vasculopathy, and infiltration by predominantly IL-17–producing CD4 T cells. Concurrently, T-bet−/− mice exhibit a T helper type 1 (Th1)–deficient environment characterized by profound IFN-γ deficiency, a Th2 switch characterized by increased production of interleukin (IL) 4, IL-5, IL-10, and IL-13 cytokines, as well as increased production of the proinflammatory cytokines IL-6, IL-12p40, and IL-17. Neutralization of IL-17 inhibits accelerated allograft rejection and vasculopathy in T-bet−/− mice. Interestingly, CD4 but not CD8 T cell deficiency in T-bet−/− mice affords dramatic protection from vasculopathy and facilitates long-term graft acceptance. This is the first study establishing that in the absence of Th1-mediated alloimmune responses, CD4 Th17 cells mediate an aggressive proinflammatory response culminating in severe accelerated allograft rejection and vasculopathy. These results have important implications for the development of novel therapies to target this intractable problem in clinical solid organ transplantation
Anti-diabetic drugs and weight loss in patients with type 2 diabetes
Introduction: Obesity is frequently a comorbidity of type 2 diabetes. Even modest weight loss can significantly improve glucose homeostasis and lessen cardiometabolic risk factors in patients with type 2 diabetes, but life-style-based weight loss strategies are not long-term effective. There is an increasing need to consider pharma-cological approaches to assist weight loss in the so called diabesity syndrome. Aim of this review is to analyze the weight-loss effect of non-insulin glucose lowering drugs in patients with type 2 diabetes. Material and methods: A systematic analysis of the literature on the effect of non-insulin glucose lowering drugs on weight loss in patients with type 2 diabetes was performed. For each class of drugs, the following parameters were analyzed: kilograms lost on average, effect on body mass index and body composition. Results: Our results suggested that anti-diabetic drugs can be stratified into 3 groups based on their efficacy in weight loss: metformin, acarbose, empagliflozin and exenatide resulted in a in a mild weight loss (less than 3.2% of initial weight); canagliflozin, ertugliflozin, dapagliflozin and dulaglutide induces a moderate weight loss (between 3.2% and 5%); liraglutide, semaglutide and tirzepatide resulted in a strong weight loss (greater than 5%). Conclusions: This study shows that new anti-diabetic drugs, particularly GLP1-RA and Tirzepatide, are the most effective in inducing weight loss in patients with type 2 diabetes. Interestingly, exenatide appears to be the only GLP1-RA that induces a mild weight loss
Inflammation and vascular dysfunction: The negative synergistic combination of diabetes and COVID-19
Several reports indicate that diabetes determines an increased mortality risk in patients with coronavirus disease 19 (COVID-19) and a good glycemic control appears to be associated with more favorable outcomes. Evidence also supports that COVID-19 pneumonia only accounts for a part of COVID-19 related deaths
Placental proteome abnormalities in women with gestational diabetes and large-for-gestational-age newborns
Introduction: Gestational diabetes mellitus (GDM) is the most frequent metabolic complication during pregnancy and is associated with development of short-term and long-term complications for newborns, with large-for-gestational-age (LGA) being particularly common. Interestingly, the mechanism behind altered fetal growth in GDM is only partially understood.
Research design and methods: A proteomic approach was used to analyze placental samples obtained from healthy pregnant women (n=5), patients with GDM (n=12) and with GDM and LGA (n=5). Effects of altered proteins on fetal development were tested in vitro in human embryonic stem cells (hESCs).
Results: Here, we demonstrate that the placental proteome is altered in pregnant women affected by GDM with LGA, with at least 37 proteins differentially expressed to a higher degree (p<0.05) as compared with those with GDM but without LGA. Among these proteins, 10 are involved in regulating tissue differentiation and/or fetal growth and development, with bone marrow proteoglycan (PRG2) and dipeptidyl peptidase-4 (DPP-4) being highly expressed. Both PRG2 and DPP-4 altered the transcriptome profile of stem cells differentiation markers when tested in vitro in hESCs, suggesting a potential role in the onset of fetal abnormalities.
Conclusions: Our findings suggest that placental dysfunction may be directly responsible for abnormal fetal growth/development during GDM. Once established on a larger population, inhibitors of the pathways involving those altered factors may be tested in conditions such as GDM and LGA, in which therapeutic approaches are still lacking
A Novel Clinically Relevant Strategy to Abrogate Autoimmunity and Regulate Alloimmunity in NOD Mice
OBJECTIVE - To investigate a new clinically relevant immunoregulatory strategy based on treatment with murine Thymoglobulin mATG Genzyme and CTLA4-Ig in NOD mice to prevent alloand autoimmune activation using a stringent model of islet transplantation and diabetes reversal. RESEARCH DESIGN AND METHODS - Using allogeneic islet transplantation models as well as NOD mice with recent onset type 1 diabetes, we addressed the therapeutic efficacy and immunomodulatory mechanisms associated with a new immunoregulatory protocol based on prolonged low-dose mATG plus CTLA4-Ig. RESULTS - BALB/c islets transplanted into hyperglycemic NOD mice under prolonged mATG+CTLA4-Ig treatment showed a pronounced delay in allograft rejection compared with untreated mice (mean survival time: 54 vs. 8 days, P < 0.0001). Immunologic analysis of mice receiving transplants revealed a complete abrogation of autoimmune responses and severe downregulation of alloimmunity in response to treatment. The striking effect on autoimmunity was confirmed by 100% diabetes reversal in newly hyperglycemic NOD mice and 100% indefinite survival of syngeneic islet transplantation (NOD.SCID into NOD mice). CONCLUSIONS - The capacity to regulate alloimmunity and to abrogate the autoimmune response in NOD mice in different settings confirmed that prolonged mATG+CTLA4-Ig treatment is a clinically relevant strategy to translate to humans with type 1 diabetes
Abnormalities of the oculomotor function in type 1 diabetes and diabetic neuropathy
Aims Abnormalities in the oculomotor system may represent an early sign of diabetic neuropathy and are currently poorly studied. We designed an eye-tracking-based test to evaluate oculomotor function in patients with type 1 diabetes. Methods We used the SRLab-Tobii TX300 Eye tracker (R), an eye-tracking device, coupled with software that we developed to test abnormalities in the oculomotor system. The software consists of a series of eye-tracking tasks divided into 4 classes of parameters (Resistance, Wideness, Pursuit and Velocity) to evaluate both smooth and saccadic movement in different directions. We analyzed the oculomotor system in 34 healthy volunteers and in 34 patients with long-standing type 1 diabetes. Results Among the 474 parameters analyzed with the eye-tracking-based system, 11% were significantly altered in patients with type 1 diabetes (p < 0.05), with a higher proportion of abnormalities observed in the Wideness (24%) and Resistance (10%) parameters. Patients with type 1 diabetes without diabetic neuropathy showed more frequently anomalous measurements in the Resistance class (p = 0.02). The classes of Velocity and Pursuit were less frequently altered in patients with type 1 diabetes as compared to healthy subjects, with anomalous measurements mainly observed in patients with diabetic neuropathy. Conclusions Abnormalities in oculomotor system function can be detected in patients with type 1 diabetes using a novel eye-tracking-based test. A larger cohort study may further determine thresholds of normality and validate whether eye-tracking can be used to non-invasively characterize early signs of diabetic neuropathy. Trial: NCT04608890
Neuroblastoma suppressor of tumorigenicity 1 is a circulating protein associated with progression to end-stage kidney disease in diabetes
Circulating proteins associated with transforming growth factor-β (TGF-β) signaling are implicated in the development of diabetic kidney disease (DKD). It remains to be comprehensively examined which of these proteins are involved in the pathogenesis of DKD and its progression to end-stage kidney disease (ESKD) in humans. Using the SOMAscan proteomic platform, we measured concentrations of 25 TGF-β signaling family proteins in four different cohorts composed in total of 754 Caucasian or Pima Indian individuals with type 1 or type 2 diabetes. Of these 25 circulating proteins, we identified neuroblastoma suppressor of tumorigenicity 1 (NBL1, aliases DAN and DAND1), a small secreted protein known to inhibit members of the bone morphogenic protein family, to be most strongly and independently associated with progression to ESKD during 10-year follow-up in all cohorts. The extent of damage to podocytes and other glomerular structures measured morphometrically in 105 research kidney biopsies correlated strongly with circulating NBL1 concentrations. Also, in vitro exposure to NBL1 induced apoptosis in podocytes. In conclusion, circulating NBL1 may be involved in the disease process underlying progression to ESKD, and its concentration in circulation may identify subjects with diabetes at increased risk of progression to ESKD
Vaccinome landscape in nearly 620 000 patients with diabetes
Context: Type 1 (T1D) and type 2 diabetes (T2D) are associated with an elevated incidence of infectious diseases and a higher risk of infectionsrelated hospitalization and death.
Objective: In this study, we delineated the “vaccinome” landscape obtained with a large immunization schedule offered by the Regional Government of Lombardy in a cohort of 618 396 patients with diabetes (T1D and T2D).
Methods: Between September 2021 and September 2022, immunization coverage for influenza, meningococcus, pneumococcus, and herpes zoster was obtained from the public computerized registry of the health care system of Lombardy Region (Italy) in 618 396 patients with diabetes and in 9 534 087 subjects without diabetes. Type of diabetes, age, mortality, and hospitalizations were retrospectively analyzed in vaccinated and unvaccinated patients.
Results: Among patients with diabetes (T1D and T2D), 44.6% received the influenza vaccine, 10.9% the pneumococcal vaccine, 2.5% the antimeningococcus vaccine, and 0.7% the antizoster vaccine. Patients with diabetes immunized for influenza, zoster, and meningococcus showed a 2-fold overall reduction in mortality risk and a decrease in hospitalizations. A 3-fold lower risk of mortality and a decrease in
hospitalizations for both cardiac and pulmonary causes were also observed after influenza, zoster, and meningococcus immunization in older patients with diabetes.
Conclusion: Immunization coverage is still far from the recommended targets in patients with diabetes. Despite this, influenza vaccination protected nearly 3800 per 100 000 patients with diabetes from risk of death. The overall impressive decrease in mortality and hospitalizations observed in vaccinated patients strengthens the need for scaling up the “vaccinome” landscape in patients with diabetes
- …
