7,862 research outputs found
Smooth optimal control with Floquet theory
This paper describes an approach to construct temporally shaped control
pulses that drive a quantum system towards desired properties. A
parametrization in terms of periodic functions with pre-defined frequencies
permits to realize a smooth, typically simple shape of the pulses; their
optimization can be performed based on a variational analysis with Floquet
theory. As we show with selected specific examples, this approach permits to
control the dynamics of interacting spins, such that gate operations and
entanglement dynamics can be implemented with very high accuracy
Thermal monopoles and selfdual dyons in the Quark-Gluon Plasma
We perform a numerical study of the excess of non-abelian gauge invariant
gluonic action around thermal abelian monopoles which populate the deconfined
phase of Yang-Mills theories. Our results show that the excess of magnetic
action is close to that of the electric one, so that thermal abelian monopoles
may be associated with physical objects carrying both electric and magnetic
charge, i.e. dyons. Thus, the quark gluon plasma is likely to be populated by
selfdual dyons, which may manifest themselves in the heavy-ion collisions via
the chiral magnetic effect. Thermodynamically, thermal monopoles provide a
negative contribution to the pressure of the system.Comment: 9 pages, 4 figures, RevTeX 4.
KCa3.1 inhibition switches the phenotype of glioma-infiltrating microglia/macrophages
Among the strategies adopted by glioma to successfully invade the brain parenchyma is turning the infiltrating microglia/macrophages (M/MΦ) into allies, by shifting them toward an anti-inflammatory, pro-tumor phenotype. Both glioma and infiltrating M/MΦ cells express the Ca(2+)-activated K(+) channel (KCa3.1), and the inhibition of KCa3.1 activity on glioma cells reduces tumor infiltration in the healthy brain parenchyma. We wondered whether KCa3.1 inhibition could prevent the acquisition of a pro-tumor phenotype by M/MΦ cells, thus contributing to reduce glioma development. With this aim, we studied microglia cultured in glioma-conditioned medium or treated with IL-4, as well as M/MΦ cells acutely isolated from glioma-bearing mice and from human glioma biopsies. Under these different conditions, M/MΦ were always polarized toward an anti-inflammatory state, and preventing KCa3.1 activation by 1-[(2-Chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), we observed a switch toward a pro-inflammatory, antitumor phenotype. We identified FAK and PI3K/AKT as the molecular mechanisms involved in this phenotype switch, activated in sequence after KCa3.1. Anti-inflammatory M/MΦ have higher expression levels of KCa3.1 mRNA (kcnn4) that are reduced by KCa3.1 inhibition. In line with these findings, TRAM-34 treatment, in vivo, significantly reduced the size of tumors in glioma-bearing mice. Our data indicate that KCa3.1 channels are involved in the inhibitory effects exerted by the glioma microenvironment on infiltrating M/MΦ, suggesting a possible role as therapeutic targets in glioma
Magnetic Component of Quark-Gluon Plasma
We describe recent developments of the "magnetic scenario" of sQGP. We show
that at there is a dense plasma of monopoles, capable of
supporting metastable flux tubes. Their existence allows to quantitatively
explained the non-trivial -dependence of the static potential
energy calculated on the lattice. By molecular dynamics simulation we derived
transport properties (shear viscosity and diffusion constant) and showed that
the best liquid is given by most symmetric plasma, with 50%-50% of electric and
magnetic charges. The results are close to those of the ``perfect liquid''
observed at RHIC.Comment: Contribution to the 20th International Conference on Nucleus Nucleus
Collisions (Quark Matter 2008
Degrees of controllability for quantum systems and applications to atomic systems
Precise definitions for different degrees of controllability for quantum
systems are given, and necessary and sufficient conditions are discussed. The
results are applied to determine the degree of controllability for various
atomic systems with degenerate energy levels and transition frequencies.Comment: 20 pages, IoP LaTeX, revised and expanded versio
Quantum Machines
We discuss quantum information processing machines. We start with single
purpose machines that either redistribute quantum information or identify
quantum states. We then move on to machines that can perform a number of
functions, with the function they perform being determined by a program, which
is itself a quantum state. Examples of both deterministic and probabilistic
programmable machines are given, and we conclude with a discussion of the
utility of quantum programs.Comment: To appear in Contemporary Physic
Observations of three slow glitches in the spin rate of the pulsar B1822-09
Three slow glitches in the rotation rate of the pulsar B1822-09 were revealed
over the 1995-2004 interval. The slow glitches observed are characterized by a
gradual increase in the rotation frequency with a long timescale of several
months, accompanied by a rapid decrease in the magnitude of the frequency first
derivative by 1-2 per cent of the initial value and subsequent exponential
increase back to its initial value on the same timescale. The cumulative
fractional increase in the pulsar rotation rate for the three glitches amounts
to Delta_nu/nu ~ 7 10^{-8}.Comment: 11 pages, 3 figures. Accepted for publication in MNRA
Impact of positivity and complete positivity on accessibility of Markovian dynamics
We consider a two-dimensional quantum control system evolving under an
entropy-increasing irreversible dynamics in the semigroup form. Considering a
phenomenological approach to the dynamics, we show that the accessibility
property of the system depends on whether its evolution is assumed to be
positive or completely positive. In particular, we characterize the family of
maps having different accessibility and show the impact of that property on
observable quantities by means of a simple physical model.Comment: 11 pages, to appear in J. Phys.
Modeling and experimental verification of an ultra-wide bandgap in 3D phononic crystal
This paper reports a comprehensive modeling and experimental characterization of a three-dimensional phononic crystal composed of a single material, endowed with an ultra-wide complete bandgap. The phononic band structure shows a gap-mid gap ratio of 132% that is by far the greatest full 3D bandgap in literature for any kind of phononic crystals. A prototype of the finite crystal structure has been manufactured in polyamide by means of additive manufacturing technology and tested to assess the transmission spectrum of the crystal. The transmission spectrum has been numerically calculated taking into account a frequency-dependent elastic modulus and a Rayleigh model for damping. The measured and numerical transmission spectra are in good agreement and present up to 75 dB of attenuation for a three-layer crystal
Constructive control of quantum systems using factorization of unitary operators
We demonstrate how structured decompositions of unitary operators can be
employed to derive control schemes for finite-level quantum systems that
require only sequences of simple control pulses such as square wave pulses with
finite rise and decay times or Gaussian wavepackets. To illustrate the
technique it is applied to find control schemes to achieve population transfers
for pure-state systems, complete inversions of the ensemble populations for
mixed-state systems, create arbitrary superposition states and optimize the
ensemble average of dynamic observables.Comment: 28 pages, IoP LaTeX, principal author has moved to Cambridge
University ([email protected]
- …
