7,862 research outputs found

    Smooth optimal control with Floquet theory

    Full text link
    This paper describes an approach to construct temporally shaped control pulses that drive a quantum system towards desired properties. A parametrization in terms of periodic functions with pre-defined frequencies permits to realize a smooth, typically simple shape of the pulses; their optimization can be performed based on a variational analysis with Floquet theory. As we show with selected specific examples, this approach permits to control the dynamics of interacting spins, such that gate operations and entanglement dynamics can be implemented with very high accuracy

    Thermal monopoles and selfdual dyons in the Quark-Gluon Plasma

    Full text link
    We perform a numerical study of the excess of non-abelian gauge invariant gluonic action around thermal abelian monopoles which populate the deconfined phase of Yang-Mills theories. Our results show that the excess of magnetic action is close to that of the electric one, so that thermal abelian monopoles may be associated with physical objects carrying both electric and magnetic charge, i.e. dyons. Thus, the quark gluon plasma is likely to be populated by selfdual dyons, which may manifest themselves in the heavy-ion collisions via the chiral magnetic effect. Thermodynamically, thermal monopoles provide a negative contribution to the pressure of the system.Comment: 9 pages, 4 figures, RevTeX 4.

    KCa3.1 inhibition switches the phenotype of glioma-infiltrating microglia/macrophages

    Get PDF
    Among the strategies adopted by glioma to successfully invade the brain parenchyma is turning the infiltrating microglia/macrophages (M/MΦ) into allies, by shifting them toward an anti-inflammatory, pro-tumor phenotype. Both glioma and infiltrating M/MΦ cells express the Ca(2+)-activated K(+) channel (KCa3.1), and the inhibition of KCa3.1 activity on glioma cells reduces tumor infiltration in the healthy brain parenchyma. We wondered whether KCa3.1 inhibition could prevent the acquisition of a pro-tumor phenotype by M/MΦ cells, thus contributing to reduce glioma development. With this aim, we studied microglia cultured in glioma-conditioned medium or treated with IL-4, as well as M/MΦ cells acutely isolated from glioma-bearing mice and from human glioma biopsies. Under these different conditions, M/MΦ were always polarized toward an anti-inflammatory state, and preventing KCa3.1 activation by 1-[(2-Chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), we observed a switch toward a pro-inflammatory, antitumor phenotype. We identified FAK and PI3K/AKT as the molecular mechanisms involved in this phenotype switch, activated in sequence after KCa3.1. Anti-inflammatory M/MΦ have higher expression levels of KCa3.1 mRNA (kcnn4) that are reduced by KCa3.1 inhibition. In line with these findings, TRAM-34 treatment, in vivo, significantly reduced the size of tumors in glioma-bearing mice. Our data indicate that KCa3.1 channels are involved in the inhibitory effects exerted by the glioma microenvironment on infiltrating M/MΦ, suggesting a possible role as therapeutic targets in glioma

    Magnetic Component of Quark-Gluon Plasma

    Full text link
    We describe recent developments of the "magnetic scenario" of sQGP. We show that at T=(0.81.3)TcT=(0.8-1.3)T_c there is a dense plasma of monopoles, capable of supporting metastable flux tubes. Their existence allows to quantitatively explained the non-trivial TT-dependence of the static QˉQ\bar Q Q potential energy calculated on the lattice. By molecular dynamics simulation we derived transport properties (shear viscosity and diffusion constant) and showed that the best liquid is given by most symmetric plasma, with 50%-50% of electric and magnetic charges. The results are close to those of the ``perfect liquid'' observed at RHIC.Comment: Contribution to the 20th International Conference on Nucleus Nucleus Collisions (Quark Matter 2008

    Degrees of controllability for quantum systems and applications to atomic systems

    Get PDF
    Precise definitions for different degrees of controllability for quantum systems are given, and necessary and sufficient conditions are discussed. The results are applied to determine the degree of controllability for various atomic systems with degenerate energy levels and transition frequencies.Comment: 20 pages, IoP LaTeX, revised and expanded versio

    Quantum Machines

    Full text link
    We discuss quantum information processing machines. We start with single purpose machines that either redistribute quantum information or identify quantum states. We then move on to machines that can perform a number of functions, with the function they perform being determined by a program, which is itself a quantum state. Examples of both deterministic and probabilistic programmable machines are given, and we conclude with a discussion of the utility of quantum programs.Comment: To appear in Contemporary Physic

    Observations of three slow glitches in the spin rate of the pulsar B1822-09

    Full text link
    Three slow glitches in the rotation rate of the pulsar B1822-09 were revealed over the 1995-2004 interval. The slow glitches observed are characterized by a gradual increase in the rotation frequency with a long timescale of several months, accompanied by a rapid decrease in the magnitude of the frequency first derivative by 1-2 per cent of the initial value and subsequent exponential increase back to its initial value on the same timescale. The cumulative fractional increase in the pulsar rotation rate for the three glitches amounts to Delta_nu/nu ~ 7 10^{-8}.Comment: 11 pages, 3 figures. Accepted for publication in MNRA

    Impact of positivity and complete positivity on accessibility of Markovian dynamics

    Full text link
    We consider a two-dimensional quantum control system evolving under an entropy-increasing irreversible dynamics in the semigroup form. Considering a phenomenological approach to the dynamics, we show that the accessibility property of the system depends on whether its evolution is assumed to be positive or completely positive. In particular, we characterize the family of maps having different accessibility and show the impact of that property on observable quantities by means of a simple physical model.Comment: 11 pages, to appear in J. Phys.

    Modeling and experimental verification of an ultra-wide bandgap in 3D phononic crystal

    Get PDF
    This paper reports a comprehensive modeling and experimental characterization of a three-dimensional phononic crystal composed of a single material, endowed with an ultra-wide complete bandgap. The phononic band structure shows a gap-mid gap ratio of 132% that is by far the greatest full 3D bandgap in literature for any kind of phononic crystals. A prototype of the finite crystal structure has been manufactured in polyamide by means of additive manufacturing technology and tested to assess the transmission spectrum of the crystal. The transmission spectrum has been numerically calculated taking into account a frequency-dependent elastic modulus and a Rayleigh model for damping. The measured and numerical transmission spectra are in good agreement and present up to 75 dB of attenuation for a three-layer crystal

    Constructive control of quantum systems using factorization of unitary operators

    Get PDF
    We demonstrate how structured decompositions of unitary operators can be employed to derive control schemes for finite-level quantum systems that require only sequences of simple control pulses such as square wave pulses with finite rise and decay times or Gaussian wavepackets. To illustrate the technique it is applied to find control schemes to achieve population transfers for pure-state systems, complete inversions of the ensemble populations for mixed-state systems, create arbitrary superposition states and optimize the ensemble average of dynamic observables.Comment: 28 pages, IoP LaTeX, principal author has moved to Cambridge University ([email protected]
    corecore