4,111 research outputs found
Electromagnetic penguin operators and direct CP violation in K --> pi l^+ l^-
Supersymmetric extensions of the Standard Model predict a large enhancement
of the Wilson coefficients of the dimension-five electromagnetic penguin
operators affecting the direct CP violation in K_L --> pi^0 e^+ e^- and the
charge asymmetry in K^\pm --> pi^\pm l^+ l^-.
Here we compute the relevant matrix elements in the chiral quark model and
compare these with the ones given by lattice calculationsComment: 12 pages, JHEP style, gluonic corrections to B_T adde
form factor in the Large-N and cut-off regularization method
Bardeen-Buras-G\'{e}rard have proposed a large N method to evaluate
hadronic weak matrix elements to attack for instance the determination of the
-rule and .
Here we test this method to the determination of the form factor parameters
and in the decays and . The results are encouraging: in particular
after a complete treatment of Vector Meson Dominance (VMD).Comment: 9 pages, two columns, 5 figure
Kaon decay interferometry as meson dynamics probes
We discuss the time dependent interferences between and in the
decays in and , to be studied at interferometry machines
such as the -factory and LEAR. We emphasize the possibilities and the
advantages of using interferences, in comparison with width measurements, to
obtain information both on conserving and violating amplitudes.
Comparison with present data and suggestions for future experiments are made.Comment: 15 pages, in RevTex, Report INFNNA-IV-93-31, UTS-DFT-93-2
Rare Kaon Decays
The current status of rare kaon decay experiments is reviewed. New limits in
the search for Lepton Flavor Violation are discussed, as are new measurements
of the CKM matrix.Comment: 8 pages, 3 figures, LaTeX, presented at the 3rd International
Conference on B Phyiscs and CP Violation, Taipei December 3-7, 199
The TORCH PMT: a close packing, multi-anode, long life MCP-PMT for Cherenkov applications
Photek (U.K.) and the TORCH collaboration are undertaking a three year development program to produce a novel square MCP-PMT for single photon detection. The TORCH detector aims to provide particle identification in the 2–10 GeV/c momentum range, using a Time-of-Flight method based on Cherenkov light. It is a stand-alone R&D project with possible application in LHCb, and has been proposed for the LHCb Upgrade. The Microchannel Plate (MCP) detector will provide a single photon timing accuracy of 40 ps, and its development will include the following properties: (i) Long lifetime up to at least 5 C/cm2; (ii) Multi-anode output with a spatial resolution of 6 mm and 0.4 mm respectively in the horizontal and vertical directions, incorporating a novel charge-sharing technique; (iii) Close packing on two opposing sides with an active area fill factor of 88% in the horizontal direction. Results from simulations modelling the MCP detector performance factoring in the pulse height variation from the detector, NINO threshold levels and potential charge sharing techniques that enhance the position resolution beyond the physical pitch of the pixel layout will be discussed. Also, a novel method of coupling the MCP-PMT output pads using Anisotropic Conductive Film (ACF) will be described. This minimises parasitic input capacitance by allowing very close proximity between the frontend electronics and the MCP detector
B_{s,d} -> l^+ l^- and K_L -> l^+ l^- in SUSY models with non-minimal sources of flavour mixing
We present a general analysis of B_{s,d}-> l^+ l^- and K_L -> l^+ l^- decays
in supersymmetric models with non-minimal sources of flavour mixing. In spite
of the existing constraints on off-diagonal squark mass terms, these modes
could still receive sizeable corrections, mainly because of Higgs-mediated
FCNCs arising at large tan(beta). The severe limits on scenarios with large
tan(beta) and non-negligible {tilde d}^i_{R(L)}-{d-tilde}^j_{R(L)} mixing
imposed by the present experimental bounds on these modes and Delta B=2
observables are discussed in detail. In particular, we show that scalar-current
contributions to K_L -> l^+ l^- and B-{bar B} mixing set non-trivial
constraints on the possibility that B_s -> l^+ l^- and B_d -> l^+ l^- receive
large corrections.Comment: 18 pages, 4 figures (v2: minor changes, published version
Analysis and correction of the magnetic field effects in the Hybrid Photo-Detectors of the RICH2 Ring Imaging Cherenkov detector of LHCb
The Ring Imaging Cherenkov detectors of the LHCb experiment at the Large
Hadron Collider at CERN are equipped with Hybrid Photo-Detectors. These vacuum
photo-detectors are affected by the stray magnetic field of the LHCb magnet,
which degrades their imaging properties. This effect increases the error on the
Cherenkov angle measurement and would reduce the particle identification
capabilities of LHCb. A system has been developed for the RICH2 Ring Imaging
Cherenkov detector to perform a detailed characterisation of the magnetic
distortion effects. It is described, along with the methods implemented to
correct for these effects, restoring the optimal resolution.Comment: 16 pages, 11 figure
X-ray detection with a scintillating YAP-window hybrid photomultiplier tube
A YAP(YAlO/sub 3/:Ce)-scintillating window, coated on its inner surface with an S20-photocathode, seals a cross-focusing hybrid photomultiplier tube (HPMT) equipped with a small p-i-n anode of 2-mm diameter. This new radiation detector separates X-ray lines down to about 2-keV peak energy from the HPMT noise. Its detection efficiency for high gamma energies depends on the YAP-window thickness and amounts to about 18% attenuation at 400-keV energy in the present version. Competitive radiation detectors like Si photodiodes and Si drift chambers are discussed and compared to our prototype, with particular attention given to their energy resolution and noise performance, which limits their active area considerably. (19 refs)
- …
