24,450 research outputs found

    Quasi-Periodic Oscillations in magnetars: linking variability and emission

    Full text link
    I present recent results studying flare emission in magnetars. Strong quasi-periodic oscillations observed in the tail of giant magnetar flares are frequently interpreted as evidence for global seismic oscillations. I demonstrate that such a global oscillation is not directly observable in the lightcurve. New work suggests the amplitude for the strongest QPO stays nearly constant in the rotation phases where it is observed, which I argue suggests it is produced by an additional emission process from the star.Comment: Proceedings of IAUS 291 "Neutron Stars and Pulsars: Challenges and Opportunities after 80 years", J. van Leeuwen (ed.); 4 pages, 3 figure

    Low Energy Neutrino Measurements

    Get PDF
    Low Energy solar neutrino detection plays a fundamental role in understanding both solar astrophysics and particle physics. After introducing the open questions on both fields, we review here the major results of the last two years and expectations for the near future from Borexino, Super-Kamiokande, SNO and KamLAND experiments as well as from upcoming (SNO+) and planned (LENA) experiments. Scintillator neutrino detectors are also powerful antineutrino detectors such as those emitted by the Earth crust and mantle. First measurements of geo-neutrinos have occurred and can bring fundamental contribution in understanding the geophysics of the planet.Comment: 18 pages, 36 figures, proceedings of XXV Lepton Photon, 22 to 27 August 2011, published on 2012-10-0

    Parallel and Distributed Simulation from Many Cores to the Public Cloud (Extended Version)

    Full text link
    In this tutorial paper, we will firstly review some basic simulation concepts and then introduce the parallel and distributed simulation techniques in view of some new challenges of today and tomorrow. More in particular, in the last years there has been a wide diffusion of many cores architectures and we can expect this trend to continue. On the other hand, the success of cloud computing is strongly promoting the everything as a service paradigm. Is parallel and distributed simulation ready for these new challenges? The current approaches present many limitations in terms of usability and adaptivity: there is a strong need for new evaluation metrics and for revising the currently implemented mechanisms. In the last part of the paper, we propose a new approach based on multi-agent systems for the simulation of complex systems. It is possible to implement advanced techniques such as the migration of simulated entities in order to build mechanisms that are both adaptive and very easy to use. Adaptive mechanisms are able to significantly reduce the communication cost in the parallel/distributed architectures, to implement load-balance techniques and to cope with execution environments that are both variable and dynamic. Finally, such mechanisms will be used to build simulations on top of unreliable cloud services.Comment: Tutorial paper published in the Proceedings of the International Conference on High Performance Computing and Simulation (HPCS 2011). Istanbul (Turkey), IEEE, July 2011. ISBN 978-1-61284-382-

    A Study of Perennial Philosophy and Psychedelic Experience, with a Proposal to Revise W. T. Stace’s Core Characteristics of Mystical Experience

    Get PDF
    A Study of Perennial Philosophy and Psychedelic Experience, with a Proposal to Revise W. T. Stace’s Core Characteristics of Mystical Experience ©Ed D’Angelo 2018 Abstract According to the prevailing paradigm in psychedelic research today, when used within an appropriate set and setting, psychedelics can reliably produce an authentic mystical experience. According to the prevailing paradigm, an authentic mystical experience is one that possesses the common or universal characteristics of mystical experience as identified by the philosopher W. T. Stace in his 1960 work Mysticism and Philosophy. Stace’s common characteristics of mystical experience are the basis for the Hood Mysticism Questionnaire, which is the most widely used quantitative measure of mystical experience in experimental studies of psychedelic experience. In this paper, I trace the historical roots of Stace’s common characteristics of mystical experience back to Christian Neoplatonism and apophatic theology, and I trace those, in turn, back to Plato’s concept of the Good and to Aristotle’s concept of God as active intellect. I argue that Stace’s common characteristics of mystical experience are not universal or culturally invariant but are the product of a specifically Christian religious and moral tradition that has its roots in ancient Greek metaphysics. My paper concludes with a revised list of common characteristics of psychedelic experience that is a better candidate for a list of invariant structures of psychedelic experience than Stace’s common characteristics of Christian mystical experience

    Highly intensive data dissemination in complex networks

    Full text link
    This paper presents a study on data dissemination in unstructured Peer-to-Peer (P2P) network overlays. The absence of a structure in unstructured overlays eases the network management, at the cost of non-optimal mechanisms to spread messages in the network. Thus, dissemination schemes must be employed that allow covering a large portion of the network with a high probability (e.g.~gossip based approaches). We identify principal metrics, provide a theoretical model and perform the assessment evaluation using a high performance simulator that is based on a parallel and distributed architecture. A main point of this study is that our simulation model considers implementation technical details, such as the use of caching and Time To Live (TTL) in message dissemination, that are usually neglected in simulations, due to the additional overhead they cause. Outcomes confirm that these technical details have an important influence on the performance of dissemination schemes and that the studied schemes are quite effective to spread information in P2P overlay networks, whatever their topology. Moreover, the practical usage of such dissemination mechanisms requires a fine tuning of many parameters, the choice between different network topologies and the assessment of behaviors such as free riding. All this can be done only using efficient simulation tools to support both the network design phase and, in some cases, at runtime

    Shape-based defect classification for Non Destructive Testing

    Full text link
    The aim of this work is to classify the aerospace structure defects detected by eddy current non-destructive testing. The proposed method is based on the assumption that the defect is bound to the reaction of the probe coil impedance during the test. Impedance plane analysis is used to extract a feature vector from the shape of the coil impedance in the complex plane, through the use of some geometric parameters. Shape recognition is tested with three different machine-learning based classifiers: decision trees, neural networks and Naive Bayes. The performance of the proposed detection system are measured in terms of accuracy, sensitivity, specificity, precision and Matthews correlation coefficient. Several experiments are performed on dataset of eddy current signal samples for aircraft structures. The obtained results demonstrate the usefulness of our approach and the competiveness against existing descriptors.Comment: 5 pages, IEEE International Worksho

    Parallel Sort-Based Matching for Data Distribution Management on Shared-Memory Multiprocessors

    Full text link
    In this paper we consider the problem of identifying intersections between two sets of d-dimensional axis-parallel rectangles. This is a common problem that arises in many agent-based simulation studies, and is of central importance in the context of High Level Architecture (HLA), where it is at the core of the Data Distribution Management (DDM) service. Several realizations of the DDM service have been proposed; however, many of them are either inefficient or inherently sequential. These are serious limitations since multicore processors are now ubiquitous, and DDM algorithms -- being CPU-intensive -- could benefit from additional computing power. We propose a parallel version of the Sort-Based Matching algorithm for shared-memory multiprocessors. Sort-Based Matching is one of the most efficient serial algorithms for the DDM problem, but is quite difficult to parallelize due to data dependencies. We describe the algorithm and compute its asymptotic running time; we complete the analysis by assessing its performance and scalability through extensive experiments on two commodity multicore systems based on a dual socket Intel Xeon processor, and a single socket Intel Core i7 processor.Comment: Proceedings of the 21-th ACM/IEEE International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2017). Best Paper Award @DS-RT 201

    LUNES: Agent-based Simulation of P2P Systems (Extended Version)

    Full text link
    We present LUNES, an agent-based Large Unstructured NEtwork Simulator, which allows to simulate complex networks composed of a high number of nodes. LUNES is modular, since it splits the three phases of network topology creation, protocol simulation and performance evaluation. This permits to easily integrate external software tools into the main software architecture. The simulation of the interaction protocols among network nodes is performed via a simulation middleware that supports both the sequential and the parallel/distributed simulation approaches. In the latter case, a specific mechanism for the communication overhead-reduction is used; this guarantees high levels of performance and scalability. To demonstrate the efficiency of LUNES, we test the simulator with gossip protocols executed on top of networks (representing peer-to-peer overlays), generated with different topologies. Results demonstrate the effectiveness of the proposed approach.Comment: Proceedings of the International Workshop on Modeling and Simulation of Peer-to-Peer Architectures and Systems (MOSPAS 2011). As part of the 2011 International Conference on High Performance Computing and Simulation (HPCS 2011
    corecore