519 research outputs found

    On the Limits of Information Spread by Memory-Less Agents

    Get PDF
    We address the self-stabilizing bit-dissemination problem, designed to capture the challenges of spreading information and reaching consensus among entities with minimal cognitive and communication capacities. Specifically, a group of n agents is required to adopt the correct opinion, initially held by a single informed individual, choosing from two possible opinions. In order to make decisions, agents are restricted to observing the opinions of a few randomly sampled agents, and lack the ability to communicate further and to identify the informed individual. Additionally, agents cannot retain any information from one round to the next. According to a recent publication by Becchetti et al. in SODA (2024), a logarithmic convergence time without memory is achievable in the parallel setting (where agents are updated simultaneously), as long as the number of samples is at least Ω(√{n log n}). However, determining the minimal sample size for an efficient protocol to exist remains a challenging open question. As a preliminary step towards an answer, we establish the first lower bound for this problem in the parallel setting. Specifically, we demonstrate that it is impossible for any memory-less protocol with constant sample size, to converge with high probability in less than an almost-linear number of rounds. This lower bound holds even when agents are aware of both the exact value of n and their own opinion, and encompasses various simple existing dynamics designed to achieve consensus. Beyond the bit-dissemination problem, our result sheds light on the convergence time of the "minority" dynamics, the counterpart of the well-known majority rule, whose chaotic behavior is yet to be fully understood despite the apparent simplicity of the algorithm

    Characterisation of gas-chromatographic poly(siloxane) stationary phases by theoretical molecular descriptors and prediction of mcreynolds constants

    Get PDF
    Retention in gas-liquid chromatography is mainly governed by the extent of intermolecular interactions between the solute and the stationary phase. While molecular descriptors of computational origin are commonly used to encode the effect of the solute structure in quantitative structure-retention relationship (QSRR) approaches, characterisation of stationary phases is historically based on empirical scales, the McReynolds system of phase constants being one of the most popular. In this work, poly(siloxane) stationary phases, which occupy a dominant position in modern gas-liquid chromatography, were characterised by theoretical molecular descriptors. With this aim, the first five McReynolds constants of 29 columns were modelled by multilinear regression (MLR) coupled with genetic algorithm (GA) variable selection applied to the molecular descriptors provided by software Dragon. The generalisation ability of the established GA-MLR models, evaluated by both external prediction and repeated calibration/evaluation splitting, was better than that reported in analogous studies regarding nonpolymeric (molecular) stationary phases. Principal component analysis on the significant molecular descriptors allowed to classify the poly(siloxanes) according to their chemical composition and partitioning properties. Development of QSRR-based models combining molecular descriptors of both solutes and stationary phases, which will be applied to transfer retention data among different columns, is in progress

    Gas chromatography-stable isotope ratio mass spectrometry prior solid phase microextraction and gas chromatography-tandem mass spectrometry: development and optimization of analytical methods to analyse garlic (Allium sativum L.) volatile fraction

    Get PDF
    Garlic (Allium sativum L.) is not only appreciated for its flavour and taste, but it is also recognized for various health properties. The European Commission, through the attribution of the Protected Designation of Origin (PDO) certification mark, has officially recognized some specific varieties of garlic. To protect not only the commercial value but also the reputation of this appreciated product, effective tools are therefore required. For the first time, a new compound specific isotope analysis method based on carbon stable isotopic ratio measurement of the three major volatile garlic compounds allyl alcohol (AA), diallyl disulphide (DD) and diallyl trisulphide (DT) through head-space solid phase microextraction (HS-SPME) followed by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) was developed. A within-day standard deviation (Srwithin-day) of 0.3 ‰, 0.4 ‰ and 0.2 ‰ for δ(13C) and a between-day standard deviation (Srbetween-day) of 0.8 ‰, 1.0 ‰ and 0.6 ‰ of AA, DT and DD was estimated. For the first time, the ranges of isotopic variability for the three volatile compounds of red garlic from two neighbouring Italian regions (Abruzzo and Lazio) were defined analysing 30 samples. The same dataset was also considered in analysing the percentage composition of the previously mentioned three volatile compounds through HS-SPME followed by gas chromatography-tandem mass spectrometry (GC-MS/MS). The two analytical approaches were combined in this explorative study, aiming to provide potential parameters to discriminate garlic samples based on their geographical origi

    Editorial: Novel Applications of Chemometrics in Analytical Chemistry and Chemical Process Industry

    Get PDF
    Nowadays, thanks to many ground-breaking technological advances, old and new challenges in chemistry and chemical industry can be constantly addressed by means of cutting-edge analytical platforms, generating massive amounts of complex high-dimensional data. In this regard, chemometric approaches, enabling the extraction of the maximum content of meaningful information such data intrinsically encode, have been playing a key role. The present Research Topic collects a series of articles that actually corroborate this aspect, i.e., how the utilisation of chemometrics could aid practitioners and operators in solving real-world issues in the two aforementioned domains, which, as for most scientific disciplines, are manifold and of rather diverse nature

    Classification of “Ricotta” whey cheese from different milk and Designation of Origin-protected samples through infrared spectroscopy and chemometric analysis

    Get PDF
    Whey cheeses are produced in various parts of the world, such as Portugal, Spain, and Turkey. In Italy, whey cheese goes under the name “ricotta”. This study investigates the classification of ricotta whey cheese derived from various milk sources (either protected designation of origin (PDO) or not) using an Attenuated Total Reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy combined with chemometric analysis. Employing the SPORT-LDA method, which can incorporate Variable Importance in Projection (VIP) analysis, 287 samples of ricotta cheese produced using milk from four different animals (sheep, cow, goat, and water buffalo) were classified according to the animal origin. This led to the correct classification of 97 % of the test samples (3 misclassified samples over 97). VIP analysis revealed that the spectral ranges of 3300–3100 cm−1, 2900–2800 cm−1, and 1700–1300 cm−1 are consistently relevant across all milk sources, thanks to the key molecular vibrations associated with protein structures, lipid content, and water. Eventually, the analysis was circumscribed to sheep ricotta cheeses, because some of these present the PDO quality mark. SIMCA was used to classify PDO samples with respect to the Non-PDO sheep ricotta individuals. The application of SIMCA to model class PDO led to 82.1 % of sensitivity and 82.7 % of specificity (in external validation). The findings underscore the robustness of ATR-FTIR spectroscopy and chemometrics in maintaining the integrity of PDO products and ensuring quality control

    E-Eye-Based Approach for Traceability and Annuality Compliance of Lentils

    Get PDF
    In recent years, thanks to their numerous nutritional benefits, legumes have been rediscovered and have attracted interest from many consumers. However, these products, the most valuable ones traditionally produced in smaller communities in particular, can be objects of fraud; this is the case of Italian lentils, which, being a dry product, have a fairly long shelf life, but, due to the minimal visual changes that can affect them, it is possible that expired lentils may be sold alongside edible ones. The present work aims at creating a non-destructive method for classifying Italian lentils according to their harvest year and origin, and for discriminating between expired and edible ones. In order to achieve this goal, Red-Green-Blue (RGB) imaging, which could be considered as a sort of e-eye and represents a cutting-edge, rapid, and effective analytical method, was used in combination with a discriminant classifier (Sequential Preprocessing through ORThogonalization-Linear Discriminant Analysis, SPORT-LDA) to create novel testing models. The SPORT-LDA models built to discriminate the different geographical origins provided an average correct classification rate on the test set of about 88%, whereas an overall 90% accuracy was obtained (on the test samples) by the SPORT-LDA model built to recognize whether a sample was still within its expiry date or not

    Modulatory Effects of Polyphenols on Apoptosis Induction: Relevance for Cancer Prevention

    Get PDF
    Polyphenols, occurring in fruit and vegetables, wine, tea, extra virgin olive oil, chocolate and other cocoa products, have been demonstrated to have clear antioxidant properties in vitro, and many of their biological actions have been attributed to their intrinsic reducing capabilities. However, it has become clear that, in complex biological systems, polyphenols exhibit several additional properties which are yet poorly understood. Apoptosis is a genetically controlled and evolutionarily conserved form of cell death of critical importance for the normal embryonic development and for the maintenance of tissue homeostasis in the adult organism. The malfunction of the death machinery may play a primary role in various pathological processes, since too little or too much apoptosis can lead to proliferative or degenerative diseases, respectively. Cancer cells are characterized by a deregulated proliferation, and/or an inability to undergo programmed cell death. A large body of evidence indicates that polyphenols can exert chemopreventive effects towards different organ specific cancers, affecting the overall process of carcinogenesis by several mechanisms: inhibition of DNA synthesis, modulation of ROS production, regulation of cell cycle arrest, modulation of survival/proliferation pathways. In addition, polyphenols can directly influence different points of the apoptotic process, and/or the expression of regulatory proteins. Although the bulk of data has been obtained in in vitro systems, a number of clinical studies suggesting a preventive and therapeutic effectiveness of polyphenols in vivo is available. However, a deeper knowledge of the underlying mechanisms responsible for the modulation of apoptosis by polyphenols, and their real effectiveness, is necessary in order to propose them as potential chemopreventive and chemotherapeutic candidates for cancer treatment

    Synthesis of hydrophilic carbon nanotube sponge via post-growth thermal treatment

    Get PDF
    Clean water is vital for healthy ecosystems, for human life and, in a broader sense, it is directly linked to our socio-economic development. Nevertheless, climate change, pollution and increasing world population will likely make clean water scarcer in the near future. Consequently, it becomes imperative to develop novel materials and more efficient ways of treating waste and contaminated water. Carbon nanotube (CNT) sponges, for example, are excellent in removing oleophilic contaminants; however, due to their super-hydrophobic nature, they are not as efficient when it comes to absorbing water-soluble substances. Here, by means of a scalable method consisting of simply treating CNT sponges at mild temperatures in air, we attach oxygen-containing functional groups to the CNT surface. The functionalized sponge becomes hydrophilic while preserving its micro- and macro-structure and can therefore be used to successfully remove toxic contaminants, such as pesticides, that are dissolved in water. This discovery expands the current range of applications of CNT sponges to those fields in which a hydrophilic character of the sponge is more suitable

    Characterization of the Volatile Profile of Cultivated and Wild-Type Italian Celery (Apium graveolens L.) Varieties by HS-SPME/GC-MS

    Get PDF
    Celery (Apium graveolens L.) is a vegetable belonging to the Apiaceae family that is widely used for its distinct flavor and contains a variety of bioactive metabolites with healthy properties. Some celery ecotypes cultivated in specific territories of Italy have recently attracted the attention of consumers and scientists because of their peculiar sensorial and nutritional properties. In this work, the volatile profiles of white celery "Sedano Bianco di Sperlonga" Protected Geographical Indication (PGI) ecotype, black celery "Sedano Nero di Torricella Peligna" and wild-type celery were investigated using head-space solid-phase microextraction combined with gas-chromatography/mass spectrometry (HS-SPME/GC-MS) and compared to that of the common ribbed celery. Exploratory multivariate statistical analyses were conducted using principal component analysis (PCA) on HS-SPME/GC-MS patterns, separately collected from celery leaves and petioles, to assess similarity/dissimilarity in the flavor composition of the investigated varieties. PCA revealed a clear differentiation of wild-type celery from the cultivated varieties. Among the cultivated varieties, black celery "Sedano Nero di Torricella Peligna" exhibited a significantly different composition in volatile profile in both leaves and petioles compared to the white celery and the prevalent commercial variety. The chemical components of aroma, potentially useful for the classification of celery according to the variety/origin, were identified

    Trypanosome KKIP1 Dynamically Links the Inner Kinetochore to a Kinetoplastid Outer Kinetochore Complex.

    Get PDF
    Kinetochores perform an essential role in eukaryotes, coupling chromosomes to the mitotic spindle. In model organisms they are composed of a centromere-proximal inner kinetochore and an outer kinetochore network that binds to microtubules. In spite of universal function, the composition of kinetochores in extant eukaryotes differs greatly. In trypanosomes and other Kinetoplastida, kinetochores are extremely divergent, with most components showing no detectable similarity to proteins in other systems. They may also be very different functionally, potentially binding to the spindle directly via an inner-kinetochore protein. However, we do not know the extent of the trypanosome kinetochore, and proteins interacting with a highly divergent Ndc80/Nuf2-like protein (KKIP1) suggest the existence of more centromere-distal complexes. Here we use quantitative proteomics from multiple start-points to define a stable 9-protein kinetoplastid outer kinetochore (KOK) complex. This complex incorporates proteins recruited from other nuclear processes, exemplifying the role of moonlighting proteins in kinetochore evolution. The outer kinetochore complex is physically distinct from inner-kinetochore proteins, but nanometer-scale label separation shows that KKIP1 bridges the two plates in the same orientation as Ndc80. Moreover, KKIP1 exhibits substantial elongation at metaphase, altering kinetochore structure in a manner consistent with pulling at the outer plate. Together, these data suggest that the KKIP1/KOK likely constitute the extent of the trypanosome outer kinetochore and that this assembly binds to the spindle with sufficient strength to stretch the kinetochore, showing design parallels may exist in organisms with very different kinetochore composition
    corecore