2,704 research outputs found

    Optimal operating conditions of an entangling two-transmon gate

    Full text link
    We identify optimal operating conditions of an entangling two-qubit gate realized by a capacitive coupling of two superconducting charge qubits in a transmission line resonator (the so called "transmons"). We demonstrate that the sensitivity of the optimized gate to 1/f flux and critical current noise is suppressed to leading order. The procedure only requires a preliminary estimate of the 1/f noise amplitudes. No additional control or bias line beyond those used for the manipulation of individual qubits are needed. The proposed optimization is effective also in the presence of relaxation processes and of spontaneous emission through the resonator (Purcell effect).Comment: 12 pages, 5 figure

    Shear and longitudinal viscosity of non-ionic C12E8 aqueous solutions

    Full text link
    We present measurements of the steady shear viscosity, the longitudinal elastic modulus and the ultrasonic absorption in the one-phase isotropic liquid region of the nonionic surfactant C12E8 aqueous solutions. The overall results support the presence of two separated intervals of concentration corresponding to different structural properties. In the surfactant-rich region the temperature dependence of the steady shear viscosity follows an equation characteristic of glass-like systems. The ultrasonic absorption spectra show unambiguous evidence of viscoelastic behaviour described by a Cole-Cole relaxation formula. In the water-rich region the behaviour of the measured quantities are more complex and reflect the presence of dispersed aggregates whose size increases with temperature and concentration. An additional low frequency contribution is also observed, which is ascribed to the exchange of water molecules and/or surfactant monomers between the aggregates and the bulk solvent region.Comment: 23 Pages, 7 Figures, 1 Table, submitted to J. Phys. Chem B, accepted for publicatio

    Information transmission over an amplitude damping channel with an arbitrary degree of memory

    Full text link
    We study the performance of a partially correlated amplitude damping channel acting on two qubits. We derive lower bounds for the single-shot classical capacity by studying two kinds of quantum ensembles, one which allows to maximize the Holevo quantity for the memoryless channel and the other allowing the same task but for the full-memory channel. In these two cases, we also show the amount of entanglement which is involved in achieving the maximum of the Holevo quantity. For the single-shot quantum capacity we discuss both a lower and an upper bound, achieving a good estimate for high values of the channel transmissivity. We finally compute the entanglement-assisted classical channel capacity.Comment: 17 pages, 7 figure

    Decoherence due to telegraph and 1/f noise in Josephson qubits

    Full text link
    We study decoherence due to random telegraph and 1/f noise in Josephson qubits. We illustrate differences between gaussian and non gaussian effects at different working points and for different protocols. Features of the intrinsically non-gaussian and non-Markovian low-frequency noise may explain the rich physics observed in the spectroscopy and the dynamics of charge based devices.Comment: 6 pages, 4 figures. Proceedings of the International Symposium on Mesoscopic Superconductivity and Spintronics 2004 (MS+S2004), Atsugi, Japa

    Classical and quantum capacities of a fully correlated amplitude damping channel

    Full text link
    We study information transmission over a fully correlated amplitude damping channel acting on two qubits. We derive the single-shot classical channel capacity and show that entanglement is needed to achieve the channel best performance. We discuss the degradability properties of the channel and evaluate the quantum capacity for any value of the noise parameter. We finally compute the entanglement-assisted classical channel capacity.Comment: 16 pages, 9 figure

    Semiclassical model for a memory dephasing channel

    Full text link
    We study a dephasing channel with memory, described by a Hamiltonian model in which the system-environment interaction is described by a stochastic process. We propose a useful way to describe the channel uses correlations. Moreover, we give a general expression for the coherences decay factors as a function of the number of channel uses and of the stochastic process power spectrum. We also study the impact of memory on the three qubit code, showing that correlations among channel uses affect very little the code performance.Comment: 8pages, 3 figures, proceedings of CEWQO 2008 Conferenc

    Dynamical Casimir Effect in Quantum Information Processing

    Full text link
    We demonstrate, in the regime of ultrastrong matter-field coupling, the strong connection between the dynamical Casimir effect (DCE) and the performance of quantum information protocols. Our results are illustrated by means of a realistic quantum communication channel and show that the DCE is a fundamental limit for quantum computation and communication and that novel schemes are required to implement ultrafast and reliable quantum gates. Strategies to partially counteract the DCE are also discussed.Comment: 7 pages, 5 figure

    Reconstructed warm season temperatures for Nome, Seward Peninsula, Alaska

    Get PDF
    [1] Understanding of past climate variability in the Bering Strait region and adjacent land areas is limited by a paucity of long instrumental and paleoclimatic records. Here we describe a reconstruction of May - August temperatures for Nome, Seward Peninsula, Alaska based on maximum latewood density data which considerably extends the available climatic information. The reconstruction shows warm conditions in the late 1600s and middle-20th century and cooler conditions in the 1800s. The summer of 1783, coinciding with the Laki, Iceland volcanic event, is among the coldest in the reconstruction. Statistically significant relationships with the North Pacific Index and Bering-Chukchi sea surface temperatures indicate that the Seward tree-ring data are potentially useful as long-term indices of atmosphere-ocean variability in the region.</p

    Hidden entanglement in the presence of random telegraph dephasing noise

    Full text link
    Entanglement dynamics of two noninteracting qubits, locally affected by random telegraph noise at pure dephasing, exhibits revivals. These revivals are not due to the action of any nonlocal operation, thus their occurrence may appear paradoxical since entanglement is by definition a nonlocal resource. We show that a simple explanation of this phenomenon may be provided by using the (recently introduced) concept of "hidden" entanglement, which signals the presence of entanglement that may be recovered with the only help of local operations.Comment: 8 pages, 1 figure, submitted to Physica Scripta on September 17th 201

    Spin-echo entanglement protection from random telegraph noise

    Full text link
    We analyze local spin-echo procedures to protect entanglement between two non-interacting qubits, each subject to pure-dephasing random telegraph noise. For superconducting qubits this simple model captures characteristic features of the effect of bistable impurities coupled to the device. An analytic expression for the entanglement dynamics is reported. Peculiar features related to the non-Gaussian nature of the noise already observed in the single qubit dynamics also occur in the entanglement dynamics for proper values of the ratio g=v/γg=v/\gamma, between the qubit-impurity coupling strength and the switching rate of the random telegraph process, and of the separation between the pulses Δt\Delta t. We find that the echo procedure may delay the disappearance of entanglement, cancel the dynamical structure of entanglement revivals and dark periods, and induce peculiar plateau-like behaviors of the concurrence.Comment: 9 pages, 2 figure
    corecore