341 research outputs found

    Galactic fountains and outflows in star forming dwarf galaxies: ISM expulsion and chemical enrichment

    Full text link
    We investigated the impact of supernova feedback in gas-rich dwarf galaxies experiencing a low-to-moderate star formation rate, typical of relatively quiescent phases between starbursts. We calculated the long term evolution of the ISM and the metal-rich SN ejecta using 3D hydrodynamic simulations, in which the feedback energy is deposited by SNeII exploding in distinct OB associations. We found that a circulation flow similar to galactic fountains is generally established, with some ISM lifted at heights of one to few kpc above the galactic plane. This gas forms an extra-planar layer, which falls back to the plane in about 10810^8 yr, once the star formation stops. Very little or no ISM is expelled outside the galaxy system for the considered SFRs, even though in the most powerful model the SN energy is comparable to the gas binding energy. The metal-rich SN ejecta is instead more vulnerable to the feedback and we found that a significant fraction (25-80\%) is vented in the intergalactic medium, even for low SN rate (7×1057\times 10^{-5} - 7×1047\times 10^{-4} yr1^{-1}). About half of the metals retained by the galaxy are located far (z>z > 500 pc) from the galactic plane. Moreover, our models indicate that the circulation of the metal-rich gas out from and back to the galactic disk is not able to erase the chemical gradients imprinted by the (centrally concentrated) SN explosions.Comment: 19 pages, MNRAS accepte

    Feedback from massive stars and gas expulsion from proto-globular clusters

    Get PDF
    © 2015. The American Astronomical Society. All rights reserved. Globular clusters (GCs) are considerably more complex structures than previously thought, harboring at least two stellar generations that present clearly distinct chemical abundances. Scenarios explaining the abundance patterns in GCs mostly assume that originally the clusters had to be much more massive than today, and that the second generation of stars originates from the gas shed by stars of the first generation (FG). The lack of metallicity spread in most GCs further requires that the supernova-enriched gas ejected by the FG is completely lost within ∼30 Myr, a hypothesis never tested by means of three-dimensional hydrodynamic simulations. In this paper, we use 3D hydrodynamic simulations including stellar feedback from winds and supernovae, radiative cooling and self-gravity to study whether a realistic distribution of OB associations in a massive proto-GC of initial mass M tot ∼ 10 7 M o is sufficient to expel its entire gas content. Our numerical experiment shows that the coherence of different associations plays a fundamental role: as the bubbles interact, distort, and merge, they carve narrow tunnels that reach deeper and deeper toward the innermost cluster regions, and through which the gas is able to escape. Our results indicate that after 3 Myr, the feedback from stellar winds is responsible for the removal of ∼40% of the pristine gas, and that after 14 Myr, 99% of the initial gas mass has been removed

    Colour gradients of high-redshift Early-Type Galaxies from hydrodynamical monolithic models

    Full text link
    We analyze the evolution of colour gradients predicted by the hydrodynamical models of early type galaxies (ETGs) in Pipino et al. (2008), which reproduce fairly well the chemical abundance pattern and the metallicity gradients of local ETGs. We convert the star formation (SF) and metal content into colours by means of stellar population synthetic model and investigate the role of different physical ingredients, as the initial gas distribution and content, and eps_SF, i.e. the normalization of SF rate. From the comparison with high redshift data, a full agreement with optical rest-frame observations at z < 1 is found, for models with low eps_SF, whereas some discrepancies emerge at 1 < z < 2, despite our models reproduce quite well the data scatter at these redshifts. To reconcile the prediction of these high eps_SF systems with the shallower colour gradients observed at lower z we suggest intervention of 1-2 dry mergers. We suggest that future studies should explore the impact of wet galaxy mergings, interactions with environment, dust content and a variation of the Initial Mass Function from the galactic centers to the peripheries.Comment: 13 pages, 7 figures, 1 table, accepted for publication on MNRA

    Decoupled and inhomogeneous gas flows in S0 galaxies

    Full text link
    A recent analysis of the "Einstein" sample of early-type galaxies has revealed that at any fixed optical luminosity Lb S0 galaxies have lower mean X-ray luminosity Lx per unit Lb than ellipticals. Following a previous analytical investigation of this problem (Ciotti & Pellegrini 1996), we have performed 2D numerical simulations of the gas flows inside S0 galaxies in order to ascertain the effectiveness of rotation and/or galaxy flattening in reducing the Lx/Lb ratio. The flow in models without SNIa heating is considerably ordered, and essentially all the gas lost by the stars is cooled and accumulated in the galaxy center. If rotation is present, the cold material settles in a disk on the galactic equatorial plane. Models with a time decreasing SNIa heating host gas flows that can be much more complex. After an initial wind phase, gas flows in energetically strongly bound galaxies tend to reverse to inflows. This occurs in the polar regions, while the disk is still in the outflow phase. In this phase of strong decoupling, cold filaments are created at the interface between inflowing and outflowing gas. Models with more realistic values of the dynamical quantities are preferentially found in the wind phase with respect to their spherical counterparts of equal Lb. The resulting Lx of this class of models is lower than in spherical models with the same Lb and SNIa heating. At variance with cooling flow models, rotation is shown to have only a marginal effect in this reduction, while the flattening is one of the driving parameters for such underluminosity, in accordance with the analytical investigation.Comment: 32 pages LaTex file, plus 5 .ps figures and macro aasms4.sty -- Accepted on Ap

    The HI content of Early-Type Galaxies from the ALFALFA survey I. Catalogued HI sources in the Virgo cluster

    Full text link
    Aims: We are using the Arecibo Legacy Fast ALFA survey (ALFALFA), which is covering 17% of the sky at 21 cm, to study the HI content of Early-Type galaxies (ETG) in an unbiased way. The aim is to get an overall picture of the hot, warm and cold ISM of ETG, as a function of galaxy mass and environment, to understand its origin and fate, and to relate it to the formation and evolution history of these objects. Methods: This paper deals with the first part of our study, which is devoted to the 8-16 deg. declination strip in the Virgo cluster. In this sky region, using the Virgo Cluster Catalogue (VCC), we have defined an optical sample of 939 ETG, 457 of which are brighter than the VCC completeness limit at B_T=18.0. We have correlated this optical sample with the catalogue of detected HI sources from ALFALFA. Results: Out of the 389 ETG from the VCC with B_T<=18.0, outside the 1 deg. region of poor HI detection around M87, and corrected for background contamination of VCC galaxies without a known radial velocity, only 9 galaxies (2.3%) are detected in HI with a completeness limit of 3.5 and 7.6 x 10^7 Mo of HI for dwarf and giant ETG, respectively. In addition 4 VCC ETG with fainter magnitudes are also detected. Our HI detection rate is lower than previously claimed. The majority of the detected ETG appear to have peculiar morphology and to be located near the edges of the Virgo cluster. Conclusions: Our preliminary conclusion is that cluster ETG contain very little neutral gas, with the exceptions of a few peculiar dwarf galaxies at the edge of the ETG classification and of very few larger ETG, where the cold gas could have a recent external origin.Comment: Accepted for publication in Astronomy and Astrophysics; 6 pages, 3 figure

    Paving the way for the JWST: witnessing globular cluster formation at z>3

    Get PDF
    We report on five compact, extremely young (<10Myr) and blue (\beta_UV<-2.5, F_\lambda =\lambda^\beta) objects observed with VLT/MUSE at redshift 3.1169, 3.235, in addition to three objects at z=6.145. These sources are magnified by the Hubble Frontier Field galaxy clusters MACS~J0416 and AS1063. Their de-lensed half light radii (Re) are between 16 to 140pc, the stellar masses are ~1-20 X 10^6 Msun, the magnitudes are m_uv=28.8 - 31.4 (-17<Muv<-15) and specific star formation rates can be as large as ~800Gyr^-1. Multiple images of these systems are widely separated in the sky (up to 50'') and individually magnified by factors 3-40. Remarkably, the inferred physical properties of two objects are similar to those expected in some globular cluster formation scenarios, representing the best candidate proto-globular clusters (proto-GC) discovered so far. Rest-frame optical high dispersion spectroscopy of one of them at z=3.1169 yields a velocity dispersion \sigma_v~20km/s, implying a dynamical mass dominated by the stellar mass. Another object at z=6.145, with de-lensed Muv ~ -15.3 (m_uv ~ 31.4), shows a stellar mass and a star-formation rate surface density consistent with the values expected from popular GC formation scenarios. An additional star-forming region at z=6.145, with de-lensed m_uv ~ 32, a stellar mass of 0.5 X 10^6 Msun and a star formation rate of 0.06 Msun/yr is also identified. These objects currently represent the faintest spectroscopically confirmed star-forming systems at z>3, elusive even in the deepest blank fields. We discuss how proto-GCs might contribute to the ionization budget of the universe and augment Lya visibility during reionization. This work underlines the crucial role of JWST in characterizing the rest-frame optical and near-infrared properties of such low-luminosity high-z objects.Comment: 19 pages, 9 figures, 2 tables. MNRAS, version accepted by the refere

    Constraining globular cluster formation through studies of young massive clusters - V. ALMA observations of clusters in the Antennae

    Get PDF
    Some formation scenarios that have been put forward to explain multiple populations within Globular Clusters (GCs) require that the young massive cluster have large reservoirs of cold gas within them, which is necessary to form future generations of stars. In this paper we use deep observations taken with Atacama Large Millimeter/sub-millimeter Array (ALMA) to assess the amount of molecular gas within 3 young (50 − 200 Myr) massive (� 106 M⊙) clusters in the Antennae galaxies. No significant CO(3–2) emission was found associated with any of the three clusters. We place upper limits for the molecular gas within these clusters of � 1 × 105 M⊙ (or < 9% of the current stellar mass). We briefly review different scenarios that propose multiple episodes of star formation and discuss some of their assumptions and implications. Our results are in tension with the predictions of GC formation scenarios that expect large reservoirs of cool gas within young massive clusters at these ages

    The dynamics and high-energy emission of conductive gas clouds in supernova-driven galactic superwinds

    Full text link
    In this paper we present high-resolution hydrodynamical models of warm ionized clouds embedded in a superwind, and compare the OVI and soft X-ray properties to the existing observational data. These models include thermal conduction, which we show plays an important role in shaping both the dynamics and radiative properties of the resulting wind/cloud interaction. Heat conduction stabilizes the cloud by inhibiting the growth of K-H and R-T instabilities, and also generates a shock wave at the cloud's surface that compresses the cloud. This dynamical behaviour influences the observable properties. We find that while OVI emission and absorption always arises in cloud material at the periphery of the cloud, most of the soft X-ray arises in the region between the wind bow shock and the cloud surface, and probes either wind or cloud material depending on the strength of conduction and the relative abundances of the wind with respect to the cloud. In general only a small fraction (<1%) of the wind mechanical energy intersecting a cloud is radiated away at UV and X-ray wavelengths, with more wind energy going into accelerating the cloud. Models with heat conduction at Spitzer-levels are found to produce observational properties closer to those observed in superwinds than models with no thermal conduction, in particular in terms of the OVI-to-X-ray luminosity ratio, but cloud life times are uncomfortably short (<1Myr) compared to the dynamical ages of real winds. We experimented with reducing the thermal conductivity and found that even when we reduced conduction by a factor of 25 that the simulations retained the beneficial hydrodynamical stability and low O{\sc vi}-to-X-ray luminosity ratio found in the Spitzer-level conductive models, while also having reduced evaporation rates.Comment: 27 pages, 12 figures (4 in color), MNRAS accepte

    3D Numerical Simulations of AGN Outflows in Clusters and Groups

    Get PDF
    We compute 3D gasdynamical models of jet outflows from the central AGN, that carry mass as well as energy to the hot gas in galaxy clusters and groups. These flows have many attractive attributes for solving the cooling flow problem: why the hot gas temperature and density profiles resemble cooling flows but show no spectral evidence of cooling to low temperatures. Subrelativistic jets, described by a few parameters, are assumed to be activated when gas flows toward or cools near a central SMBH. Using approximate models for a rich cluster (A1795), a poor cluster (2A 0336+096) and a group (NGC 5044), we show that mass-carrying jets with intermediate mechanical efficiencies (103\sim10^{-3}) can reduce for many Gyr the global cooling rate to or below the low values implied by X-spectra, while maintaining TT and ρ\rho profiles similar to those observed, at least in clusters. Groups are much more sensitive to AGN heating and present extreme time variability in both profiles. Finally, the intermittency of the feedback generates multiple generations of X-ray cavities similar to those observed in Perseus cluster and elsewhere. Thus we also study the formation of buoyant bubbles and weak shocks in the ICM, along with the injection of metals by SNIa and stellar winds.Comment: 4 pages, 2 figures, to appear in proceedings of the conference "The Monster's Fiery Breath: Feedback in Galaxies, Groups, and Clusters", June 2009, Madison Wisconsi
    corecore