2,071 research outputs found
A simple method for detecting chaos in nature
Chaos, or exponential sensitivity to small perturbations, appears everywhere
in nature. Moreover, chaos is predicted to play diverse functional roles in
living systems. A method for detecting chaos from empirical measurements should
therefore be a key component of the biologist's toolkit. But, classic
chaos-detection tools are highly sensitive to measurement noise and break down
for common edge cases, making it difficult to detect chaos in domains, like
biology, where measurements are noisy. However, newer tools promise to overcome
these limitations. Here, we combine several such tools into an automated
processing pipeline, and show that our pipeline can detect the presence (or
absence) of chaos in noisy recordings, even for difficult edge cases. As a
first-pass application of our pipeline, we show that heart rate variability is
not chaotic as some have proposed, and instead reflects a stochastic process in
both health and disease. Our tool is easy-to-use and freely available
An approach for identifying brainstem dopaminergic pathways using resting state functional MRI.
Here, we present an approach for identifying brainstem dopaminergic pathways using resting state functional MRI. In a group of healthy individuals, we searched for significant functional connectivity between dopamine-rich midbrain areas (substantia nigra; ventral tegmental area) and a striatal region (caudate) that was modulated by both a pharmacological challenge (the administration of the dopaminergic agonist bromocriptine) and a dopamine-sensitive cognitive trait (an individual's working memory capacity). A significant inverted-U shaped connectivity pattern was found in a subset of midbrain-striatal connections, demonstrating that resting state fMRI data is sufficiently powerful to identify brainstem neuromodulatory brain networks
A mechanistic model of connector hubs, modularity, and cognition
The human brain network is modular--comprised of communities of tightly
interconnected nodes. This network contains local hubs, which have many
connections within their own communities, and connector hubs, which have
connections diversely distributed across communities. A mechanistic
understanding of these hubs and how they support cognition has not been
demonstrated. Here, we leveraged individual differences in hub connectivity and
cognition. We show that a model of hub connectivity accurately predicts the
cognitive performance of 476 individuals in four distinct tasks. Moreover,
there is a general optimal network structure for cognitive
performance--individuals with diversely connected hubs and consequent modular
brain networks exhibit increased cognitive performance, regardless of the task.
Critically, we find evidence consistent with a mechanistic model in which
connector hubs tune the connectivity of their neighbors to be more modular
while allowing for task appropriate information integration across communities,
which increases global modularity and cognitive performance
The positional-specificity effect reveals a passive-trace contribution to visual short-term memory.
The positional-specificity effect refers to enhanced performance in visual short-term memory (VSTM) when the recognition probe is presented at the same location as had been the sample, even though location is irrelevant to the match/nonmatch decision. We investigated the mechanisms underlying this effect with behavioral and fMRI studies of object change-detection performance. To test whether the positional-specificity effect is a direct consequence of active storage in VSTM, we varied memory load, reasoning that it should be observed for all objects presented in a sub-span array of items. The results, however, indicated that although robust with a memory load of 1, the positional-specificity effect was restricted to the second of two sequentially presented sample stimuli in a load-of-2 experiment. An additional behavioral experiment showed that this disruption wasn't due to the increased load per se, because actively processing a second object--in the absence of a storage requirement--also eliminated the effect. These behavioral findings suggest that, during tests of object memory, position-related information is not actively stored in VSTM, but may be retained in a passive tag that marks the most recent site of selection. The fMRI data were consistent with this interpretation, failing to find location-specific bias in sustained delay-period activity, but revealing an enhanced response to recognition probes that matched the location of that trial's sample stimulus
Recommended from our members
Amygdala Response to Facial Expressions Reflects Emotional Learning
The functional role of the human amygdala in the evaluation of emotional facial expressions is unclear. Previous animal and human research shows that the amygdala participates in processing positive and negative reinforcement as well as in learning predictive associations between stimuli and subsequent reinforcement. Thus, amygdala response to facial expressions could reflect the processing of primary reinforcement or emotional learning. Here, using functional magnetic resonance imaging, we tested the hypothesis that amygdala response to facial expressions is driven by emotional association learning. We show that the amygdala is more responsive to learning object-emotion associations from happy and fearful facial expressions than it is to the presentation of happy and fearful facial expressions alone. The results provide evidence that the amygdala uses social signals to rapidly and flexibly learn threatening and rewarding associations that ultimately serve to enhance survival.Psycholog
Quantification of light attenuation in optically cleared mouse brains
Optical clearing, in combination with recently developed optical imaging techniques, enables visualization and acquisition of high-resolution, three-dimensional images of biological structures deep within the tissue. Many different approaches can be used to reduce light absorption and scattering within the tissue, but there is a paucity of research on the quantification of clearing efficacy. With the use of a custom-made spectroscopy system, we developed a way to quantify the quality of clearing in biological tissue and applied it to the mouse brain. Three clearing techniques were compared: BABB (1:2 mixture of benzyl alcohol and benzyl benzoate, also known as Murray’s clear), pBABB (peroxide BABB, a modification of BABB which includes the use of hydrogen peroxide), and passive CLARITY. We found that BABB and pBABB produced the highest degree of optical clearing. Furthermore, the approach allows regional measurement of light attenuation to be performed, and our results show that light is most attenuated in regions with high lipid content. We provide a way to choose between the multiple clearing protocols available, and it could prove useful for evaluating images that are acquired with cleared tissues
Recommended from our members
Neural Activity During Social Signal Perception Correlates With Self-reported Empathy
Empathy is an important component of human relationships, yet the neural mechanisms that facilitate empathy are unclear. The broad construct of empathy incorporates both cognitive and affective components. Cognitive empathy includes mentalizing skills such as perspective-taking. Affective empathy consists of the affect produced in response to someone else's emotional state, a process which is facilitated by simulation or “mirroring.” Prior evidence shows that mentalizing tasks engage a neural network which includes the temporoparietal junction, superior temporal sulcus, and medial prefrontal cortex. On the other hand, simulation tasks engage the fronto-parietal mirror neuron system (MNS) which includes the inferior frontal gyrus (IFG) and the somotosensory related cortex (SRC). Here, we tested whether neural activity in these two neural networks was related to self-reports of cognitive and affective empathy in daily life. Participants viewed social scenes in which the shift of direction of attention of a character did or did not change the character's mental and emotional state. As expected, the task robustly activated both mentalizing and MNS networks. We found that when detecting the character's change in mental and emotional state, neural activity in both networks is strongly related to cognitive empathy. Specifically, neural activity in the IFG, SRC, and STS were related to cognitive empathy. Activity in the precentral gyrus was related to affective empathy. The findings suggest that both simulation and mentalizing networks contribute to multiple components of empathy.Psycholog
Reduced brain UCP2 expression mediated by microRNA-503 contributes to increased stroke susceptibility in the high-salt fed stroke-prone spontaneously hypertensive rat
UCP2 maps nearby the lod score peak of STR1-stroke QTL in the SHRSP rat strain. We explored the potential contribution of UCP2 to the high-salt diet (JD)-dependent increased stroke susceptibility of SHRSP. Male SHRSP, SHRSR, two reciprocal SHRSR/SHRSP-STR1/QTL stroke congenic lines received JD for 4 weeks to detect brain UCP2 gene/protein modulation as compared with regular diet (RD). Brains were also analyzed for NF-κB protein expression, oxidative stress level and UCP2-targeted microRNAs expression level. Next, based on knowledge that fenofibrate and Brassica Oleracea (BO) stimulate UCP2 expression through PPARα activation, we monitored stroke occurrence in SHRSP receiving JD plus fenofibrate versus vehicle, JD plus BO juice versus BO juice plus PPARα inhibitor. Brain UCP2 expression was markedly reduced by JD in SHRSP and in the (SHRsr.SHRsp-(D1Rat134-Mt1pa)) congenic line, whereas NF-κB expression and oxidative stress level increased. The opposite phenomenon was observed in the SHRSR and in the (SHRsp.SHRsr-(D1Rat134-Mt1pa)) reciprocal congenic line. Interestingly, the UCP2-targeted rno-microRNA-503 was significantly upregulated in SHRSP and decreased in SHRSR upon JD, with consistent changes in the two reciprocal congenic lines. Both fenofibrate and BO significantly decreased brain microRNA-503 level, upregulated UCP2 expression and protected SHRSP from stroke occurrence. In vitro overexpression of microRNA-503 in endothelial cells suppressed UCP2 expression and led to a significant increase of cell mortality with decreased cell viability. Brain UCP2 downregulation is a determinant of increased stroke predisposition in high-salt-fed SHRSP. In this context, UCP2 can be modulated by both pharmacological and nutraceutical agents. The microRNA-503 significantly contributes to mediate brain UCP2 downregulation in JD-fed SHRSP
Quantifying the Reconfiguration of Intrinsic Networks during Working Memory
Rapid, flexible reconfiguration of connections across brain regions is thought to underlie successful cognitive control. Two intrinsic networks in particular, the cingulo-opercular (CO) and fronto-parietal (FP), are thought to underlie two operations critical for cognitive control: task-set maintenance/tonic alertness and adaptive, trial-by-trial updating. Using functional magnetic resonance imaging, we directly tested whether the functional connectivity of the CO and FP networks was related to cognitive demands and behavior. We focused on working memory because of evidence that during working memory tasks the entire brain becomes more integrated. When specifically probing the CO and FP cognitive control networks, we found that individual regions of both intrinsic networks were active during working memory and, as expected, integration across the two networks increased during task blocks that required cognitive control. Crucially, increased integration between each of the cognitive control networks and a task-related, non-cognitive control network (the hand somatosensory-motor network; SM) was related to increased accuracy. This implies that dynamic reconfiguration of the CO and FP networks so as to increase their inter-network communication underlies successful working memory
- …
