4,194 research outputs found

    A New Empirical Model for the Structural Analysis of Early-type Galaxies and a Critical Review of the Nuker Model

    Full text link
    The Nuker law was designed to match the inner few (~3-10) arcseconds of predominantly nearby (< 30 Mpc) early-type galaxy light-profiles; it was never intended to describe an entire profile. The Sersic model, on the other hand, was developed to fit the entire profile; however, due to the presence of partially depleted galaxy cores, the Sersic model cannot always describe the very inner region. We have therefore developed a new empirical model consisting of an inner power-law, a transition region, and an outer Sersic model to connect the inner and outer structure of elliptical galaxies. Moreover, the stability of the Nuker model parameters are investigated. Surprisingly, none are found to be stable quantities; all are shown to vary systematically with a profile's fitted radial extent, and often by more than 100%. Considering elliptical galaxies spanning a range of 7.5 magnitudes, the central stellar density of the underlying host galaxy is observed to increase with galaxy luminosity until the onset of core formation, detected only in the brightest elliptical galaxies. We suggest that the so-called ``power-law'' galaxies may actually be described by the Sersic model over their entire radial range

    Scaling relations of cluster elliptical galaxies at z~1.3. Distinguishing luminosity and structural evolution

    Full text link
    [Abridged] We studied the size-surface brightness and the size-mass relations of a sample of 16 cluster elliptical galaxies in the mass range 10^{10}-2x10^{11} M_sun which were morphologically selected in the cluster RDCS J0848+4453 at z=1.27. Our aim is to assess whether they have completed their mass growth at their redshift or significant mass and/or size growth can or must take place until z=0 in order to understand whether elliptical galaxies of clusters follow the observed size evolution of passive galaxies. To compare our data with the local universe we considered the Kormendy relation derived from the early-type galaxies of a local Coma Cluster reference sample and the WINGS survey sample. The comparison with the local Kormendy relation shows that the luminosity evolution due to the aging of the stellar content already assembled at z=1.27 brings them on the local relation. Moreover, this stellar content places them on the size-mass relation of the local cluster ellipticals. These results imply that for a given mass, the stellar mass at z~1.3 is distributed within these ellipticals according to the same stellar mass profile of local ellipticals. We find that a pure size evolution, even mild, is ruled out for our galaxies since it would lead them away from both the Kormendy and the size-mass relation. If an evolution of the effective radius takes place, this must be compensated by an increase in the luminosity, hence of the stellar mass of the galaxies, to keep them on the local relations. We show that to follow the Kormendy relation, the stellar mass must increase as the effective radius. However, this mass growth is not sufficient to keep the galaxies on the size-mass relation for the same variation in effective radius. Thus, if we want to preserve the Kormendy relation, we fail to satisfy the size-mass relation and vice versa.Comment: Accepted for publication in A&A, updated to match final journal versio

    Adaptive Optics Rest-Frame V-band Imaging of Lyman Break Galaxies at z~3: High-surface Density Disk-like Galaxies ?

    Full text link
    In order to reveal the rest-frame V-band morphology of galaxies at z~3, we conducted AO-assisted K-band imaging observations of z~3 LBGs with Mv*-0.5 to Mv*+3.0 mag. LBGs brighter than Mv* have larger rHL (0.40") than the fainter LBGs (0.23") on average, and there is no bright LBGs with a small rHL. The LBGs brighter than Mv* have red rest-frame U-V colors (average of 0.2 mag) and most of the fainter LBGs show blue rest-frame U-V colors (average of -0.4 mag). The K-band peaks of some of the LBGs brighter than K=22.0 mag show significant shift from those in the optical images. The images of all but one of the LBGs with K<21.5 mag are fitted well with Sersic profile with n index less than 2, similar to disk galaxies in the local universe. Assuming that the LBGs have a disk-shape, we compared their size-luminosity and size-stellar mass relation with those of z=0 and z=1 disk galaxies. The LBGs are brighter than z=0 and z=1 disk galaxies at the same effective radius. The rest-frame V-band surface brightness of the LBGs are 2.2-2.9 mag and 1.2-1.9 mag brighter than the disk galaxies at z=0 and z=1, respectively. The size-stellar mass relation of the LBGs shows that the effective radii of the LBGs do not depend on their stellar mass. For the LBGs brighter than Mv*, the average surface stellar mass density is 3-6 times larger than those of the z=0 and z=1 disk galaxies. We also examine the profiles of the serendipitously observed DRGs. They are also fitted with the Sersic profiles with n<2. The implications of the dominance of n<2 population among galaxies at z~3 and the presence of the high surface stellar mass density disk systems are discussed.Comment: Accepted for publication in Astrophysical Journal Supplement. 38 pages, 26 postscript figures. Original version with high resolution figures is available from http://www.naoj.org/staff/akiyama/papers/LBG_AO.pd

    Discovery of a new M32-like "Compact Elliptical" galaxy in the halo of the Abell 496 cD galaxy

    Get PDF
    Aims: ``Compact ellipticals'' are so rare that a search for M32 analogs is needed to ensure the very existence of this class. Methods: We report here the discovery of A496cE, a M32 twin in the cluster Abell 496, located in the halo of the central cD. Results: Based on CFHT and HST imaging we show that the light profile of A496cE requires a two component fit: a Sersic bulge and an exponential disc. The spectrum of A496cE obtained with the ESO-VLT FLAMES/Giraffe spectrograph can be fit by a stellar synthesis spectrum dominated by old stars, with high values of [Mg/Fe] and velocity dispersion. Conclusions: The capture of A496cE by the cD galaxy and tidal stripping of most of its disc are briefly discussed.Comment: 4 pages, 4 figures, accepted for publication in A&A Letter

    NGF steers microglia toward a neuroprotective phenotype

    Get PDF
    Microglia are the sentinels of the brain but a clear understanding of the factors that modulate their activation in physiological and pathological conditions is still lacking. Here we demonstrate that Nerve Growth Factor (NGF) acts on microglia by steering them toward a neuroprotective and anti-inflammatory phenotype. We show that microglial cells express functional NGF receptors in vitro and ex vivo. Our transcriptomic analysis reveals how, in primary microglia, NGF treatment leads to a modulation of motility, phagocytosis and degradation pathways. At the functional level, NGF induces an increase in membrane dynamics and macropinocytosis and, in vivo, it activates an outward rectifying current that appears to modulate glutamatergic neurotransmission in nearby neurons. Since microglia are supposed to be a major player in Aβ peptide clearance in the brain, we tested the effects of NGF on its phagocytosis. NGF was shown to promote TrkA-mediated engulfment of Aβ by microglia, and to enhance its degradation. Additionally, the proinflammatory activation induced by Aβ treatment is counteracted by the concomitant administration of NGF. Moreover, by acting specifically on microglia, NGF protects neurons from the Aβ-induced loss of dendritic spines and inhibition of long term potentiation. Finally, in an ex-vivo setup of acute brain slices, we observed a similar increase in Aβ engulfment by microglial cells under the influence of NGF. Our work substantiates a role for NGF in the regulation of microglial homeostatic activities and points toward this neurotrophin as a neuroprotective agent in Aβ accumulation pathologies, via its anti-inflammatory activity on microglia

    Triple positive breast cancer. A distinct subtype?

    Get PDF
    Breast cancer is a heterogeneous disease, and within the HER-2 positive subtype this is highly exemplified by the presence of substantial phenotypical and clinical heterogeneity, mostly related to hormonal receptor (HR) expression. It is well known how HER-2 positivity is commonly associated with a more aggressive tumor phenotype and decreased overall survival and, moreover, with a reduced benefit from endocrine treatment. Preclinical studies corroborate the role played by functional crosstalks between HER-2 and estrogen receptor (ER) signaling in endocrine resistance and, more recently, the activation of ER signaling is emerging as a possible mechanism of resistance to HER-2 blocking agents. Indeed, HER-2 positive breast cancer heterogeneity has been suggested to underlie the variability of response not only to endocrine treatments, but also to HER-2 blocking agents. Among HER-2 positive tumors, HR status probably defines two distinct subtypes, with dissimilar clinical behavior and different sensitivity to anticancer agents. The triple positive subtype, namely, ER/PgR/Her-2 positive tumors, could be considered the subset which most closely resembles the HER-2 negative/HR positive tumors, with substantial differences in biology and clinical outcome. We argue on whether in this subgroup the "standard" treatment may be considered, in selected cases, i.e., small tumors, low tumor burden, high expression of both hormonal receptors, an overtreatment. This article review the existing literature on biologic and clinical data concerning the HER-2/ER/PgR positive tumors, in an attempt to better define the HER-2 subtypes and to optimize the use of HER-2 targeted agents, chemotherapy and endocrine treatments in the various subsets

    SPIDER - IV. Optical and NIR color gradients in Early-type galaxies: New Insights into Correlations with Galaxy Properties

    Full text link
    We present an analysis of stellar population gradients in 4,546 Early-Type Galaxies with photometry in grizYHJKgrizYHJK along with optical spectroscopy. A new approach is described which utilizes color information to constrain age and metallicity gradients. Defining an effective color gradient, \nabla_{\star}, which incorporates all of the available color indices, we investigate how \nabla_{\star} varies with galaxy mass proxies, i.e. velocity dispersion, stellar (M_star) and dynamical (M_dyn) masses, as well as age, metallicity, and alpha/Fe. ETGs with M_dyn larger than 8.5 x 10^10, M_odot have increasing age gradients and decreasing metallicity gradients wrt mass, metallicity, and enhancement. We find that velocity dispersion and alpha/Fe are the main drivers of these correlations. ETGs with 2.5 x 10^10 M_odot =< M_dyn =< 8.5 x 10^10 M_odot, show no correlation of age, metallicity, and color gradients wrt mass, although color gradients still correlate with stellar population parameters, and these correlations are independent of each other. In both mass regimes, the striking anti-correlation between color gradient and alpha-enhancement is significant at \sim 4sigma, and results from the fact that metallicity gradient decreases with alpha/Fe. This anti-correlation may reflect the fact that star formation and metallicity enrichment are regulated by the interplay between the energy input from supernovae, and the temperature and pressure of the hot X-ray gas in ETGs. For all mass ranges, positive age gradients are associated with old galaxies (>5-7 Gyr). For galaxies younger than \sim 5 Gyr, mostly at low-mass, the age gradient tends to be anti-correlated with the Age parameter, with more positive gradients at younger ages.Comment: Accepted for Publication in the Astronomical Journa

    The interplay of intrinsic and extrinsic bounded noises in genetic networks

    Get PDF
    After being considered as a nuisance to be filtered out, it became recently clear that biochemical noise plays a complex role, often fully functional, for a genetic network. The influence of intrinsic and extrinsic noises on genetic networks has intensively been investigated in last ten years, though contributions on the co-presence of both are sparse. Extrinsic noise is usually modeled as an unbounded white or colored gaussian stochastic process, even though realistic stochastic perturbations are clearly bounded. In this paper we consider Gillespie-like stochastic models of nonlinear networks, i.e. the intrinsic noise, where the model jump rates are affected by colored bounded extrinsic noises synthesized by a suitable biochemical state-dependent Langevin system. These systems are described by a master equation, and a simulation algorithm to analyze them is derived. This new modeling paradigm should enlarge the class of systems amenable at modeling. We investigated the influence of both amplitude and autocorrelation time of a extrinsic Sine-Wiener noise on: (i)(i) the Michaelis-Menten approximation of noisy enzymatic reactions, which we show to be applicable also in co-presence of both intrinsic and extrinsic noise, (ii)(ii) a model of enzymatic futile cycle and (iii)(iii) a genetic toggle switch. In (ii)(ii) and (iii)(iii) we show that the presence of a bounded extrinsic noise induces qualitative modifications in the probability densities of the involved chemicals, where new modes emerge, thus suggesting the possibile functional role of bounded noises

    The Sloan Lens ACS Survey. VII. Elliptical Galaxy Scaling Laws from Direct Observational Mass Measurements

    Full text link
    We use a sample of 53 massive early-type strong gravitational lens galaxies with well-measured redshifts (ranging from z=0.06 to 0.36) and stellar velocity dispersions (between 175 and 400 km/s) from the Sloan Lens ACS (SLACS) Survey to derive numerous empirical scaling relations. The ratio between central stellar velocity dispersion and isothermal lens-model velocity dispersion is nearly unity within errors. The SLACS lenses define a fundamental plane (FP) that is consistent with the FP of the general population of early-type galaxies. We measure the relationship between strong-lensing mass M_lens within one-half effective radius (R_e/2) and the dimensional mass variable M_dim = G^-1 sigma_e2^2 R_e/2 to be log_10 [M_lens/10^11 M_Sun] = (1.03 +/- 0.04) log_10 [M_dim/10^11 M_Sun] + (0.54 +/- 0.02) (where sigma_e2 is the projected stellar velocity dispersion within R_e/2). The near-unity slope indicates that the mass-dynamical structure of massive elliptical galaxies is independent of mass, and that the "tilt" of the SLACS FP is due entirely to variation in total (luminous plus dark) mass-to-light ratio with mass. Our results imply that dynamical masses serve as a good proxies for true masses in massive elliptical galaxies. Regarding the SLACS lenses as a homologous population, we find that the average enclosed 2D mass profile goes as log_10 [M(<R)/M_dim] = (1.10 +/- 0.09) log_10 [R/R_e] + (0.85 +/- 0.03), consistent with an isothermal (flat rotation curve) model when de-projected into 3D. This measurement is inconsistent with the slope of the average projected aperture luminosity profile at a confidence level greater than 99.9%, implying a minimum dark-matter fraction of f_DM = 0.38 +/- 0.07 within one effective radius. (abridged)Comment: 13 pages emulateapj; accepted for publication in the Ap

    Search for Second-Generation Scalar Leptoquarks in ppˉ\bm{p \bar{p}} Collisions at s\sqrt{s}=1.96 TeV

    Get PDF
    Results on a search for pair production of second generation scalar leptoquark in ppˉp \bar{p} collisions at s\sqrt{s}=1.96 TeV are reported. The data analyzed were collected by the CDF detector during the 2002-2003 Tevatron Run II and correspond to an integrated luminosity of 198 pb1^{-1}. Leptoquarks (LQ) are sought through their decay into (charged) leptons and quarks, with final state signatures represented by two muons and jets and one muon, large transverse missing energy and jets. We observe no evidence for LQLQ production and derive 95% C.L. upper limits on the LQLQ production cross sections as well as lower limits on their mass as a function of β\beta, where β\beta is the branching fraction for LQμqLQ \to \mu q.Comment: 9 pages (3 author list) 5 figure
    corecore