1,634 research outputs found
Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder
The first systematic observations of the middle atmosphere of Mars (35–80km) with the Mars Climate Sounder (MCS) show dramatic patterns of diurnal thermal variation, evident in retrievals of temperature and water ice opacity. At the time of writing, the data set of MCS limb retrievals is sufficient for spectral analysis within a limited range of latitudes and seasons. This analysis shows that these thermal variations are almost exclusively associated with a diurnal thermal tide. Using a Martian general circulation model to extend our analysis, we show that the diurnal thermal tide dominates these patterns for all latitudes and all seasons
Radio Galaxy Zoo: Cosmological Alignment of Radio Sources
We study the mutual alignment of radio sources within two surveys, FIRST and
TGSS. This is done by producing two position angle catalogues containing the
preferential directions of respectively and extended
sources distributed over more than and square degrees. The
identification of the sources in the FIRST sample was performed in advance by
volunteers of the Radio Galaxy Zoo project, while for the TGSS sample it is the
result of an automated process presented here. After taking into account
systematic effects, marginal evidence of a local alignment on scales smaller
than is found in the FIRST sample. The probability of this happening
by chance is found to be less than per cent. Further study suggests that on
scales up to the alignment is maximal. For one third of the sources,
the Radio Galaxy Zoo volunteers identified an optical counterpart. Assuming a
flat CDM cosmology with , we
convert the maximum angular scale on which alignment is seen into a physical
scale in the range Mpc . This result supports recent
evidence reported by Taylor and Jagannathan of radio jet alignment in the
deg ELAIS N1 field observed with the Giant Metrewave Radio Telescope. The
TGSS sample is found to be too sparsely populated to manifest a similar signal
Radio galaxies and their magnetic fields out to z <= 3
We present polarisation properties at GHz of two separate
extragalactic source populations: passive quiescent galaxies and luminous
quasar-like galaxies. We use data from the {\it Wide-Field Infrared Survey
Explorer} data to determine the host galaxy population of the polarised
extragalactic radio sources. The quiescent galaxies have higher percentage
polarisation, smaller radio linear size, and GHz luminosity of
W Hz, while the quasar-like
galaxies have smaller percentage polarisation, larger radio linear size at
radio wavelengths, and a GHz luminosity of W Hz, suggesting that the environment of the
quasar-like galaxies is responsible for the lower percentage polarisation. Our
results confirm previous studies that found an inverse correlation between
percentage polarisation and total flux density at GHz. We suggest that
the population change between the polarised extragalactic radio sources is the
origin of this inverse correlation and suggest a cosmic evolution of the space
density of quiescent galaxies. Finally, we find that the extragalactic
contributions to the rotation measures (RMs) of the nearby passive galaxies and
the distant quasar-like galaxies are different. After accounting for the RM
contributions by cosmological large-scale structure and intervening Mg\,{II}
absorbers we show that the distribution of intrinsic RMs of the distant
quasar-like sources is at most four times as wide as the RM distribution of the
nearby quiescent galaxies, if the distribution of intrinsic RMs of the
WISE-Star sources itself is at least several rad m wide.Comment: 12 pages, 8 figures, accepted for publication into MNRA
Recommended from our members
An ASKAP Search for a Radio Counterpart to the First High-significance Neutron Star-Black Hole Merger LIGO/Virgo S190814bv
We present results from a search for a radio transient associated with the LIGO/Virgo source S190814bv, a likely neutron star-black hole (NSBH) merger, with the Australian Square Kilometre Array Pathfinder. We imaged a 30 deg2 field at ΔT = 2, 9, and 33 days post-merger at a frequency of 944 MHz, comparing them to reference images from the Rapid ASKAP Continuum Survey observed 110 days prior to the event. Each epoch of our observations covers 89% of the LIGO/Virgo localization region. We conducted an untargeted search for radio transients in this field, resulting in 21 candidates. For one of these, AT2019osy, we performed multiwavelength follow-up and ultimately ruled out the association with S190814bv. All other candidates are likely unrelated variables, but we cannot conclusively rule them out. We discuss our results in the context of model predictions for radio emission from NSBH mergers and place constrains on the circum-merger density and inclination angle of the merger. This survey is simultaneously the first large-scale radio follow-up of an NSBH merger, and the most sensitive widefield radio transients search to-date
Recommended from our members
Observations of the martian atmosphere with the mars climate sounder
The Mars Climate Sounder (MCS) has obtained measurements of the Martian atmosphere for one Mars year. Onboard the Mars Reconnaissance Orbiter (MRO), MCS continues to acquire high vertical resolution profiles of temperature, dust, condensates of CO2 and H2O, and water vapor by observing the limb of the atmosphere from the surface to 80 km in the spectral intervals 0.3 – 3 ?m and 11.5 – 45 ?m [1]. This paper describes the investigation and introduces some of the observations being studied by the MCS science team. Other presentations by the team at this workshop will describe in greater detail results of ongoing research using MCS data
Jovian Chromophore Characteristics from Multispectral HST Images
The chromophores responsible for coloring the jovian atmosphere are embedded within Jupiter's vertical aerosol structure. Sunlight propagates through this vertical distribution of aerosol particles, whose colors are defined by omega-bar (sub 0)(lambda), and we remotely observe the culmination of the radiative transfer as I/F(lambda). In this study, we employed a radiative transfer code to retrieve omega-bar (sub 0)(lambda) for particles in Jupiter's tropospheric haze at seven wavelengths in the near-UV and visible regimes. The data consisted of images of the 2008 passage of Oval BA to the south of the Great Red Spot obtained by the Wide Field Planetary Camera 2 on-board the Hubble Space Telescope. We present derived particle colors for locations that were selected from 14 weather regions, which spanned a large range of observed colors. All omega-bar (sub 0)(lambda) curves were absorbing in the blue, and omega-bar (sub 0)(lambda) increased monotonically to approximately unity as wavelength increased. We found accurate fits to all omega-bar (sub 0)(lambda) curves using an empirically derived functional form: omega-bar (sub 0)(lambda) = 1 A exp(-B lambda). The best-fit parameters for the mean omega-bar (sub 0)(lambda) curve were A = 25.4 and B = 0.0149 for lambda in units of nm. We performed a principal component analysis (PCA) on our omega-bar (sub 0)(lambda) results and found that one or two independent chromophores were sufficient to produce the variations in omega-bar (sub 0)(lambda). A PCA of I/F(lambda) for the same jovian locations resulted in principal components (PCs) with roughly the same variances as the omega-bar (sub 0)(lambda) PCA, but they did not result in a one-to-one mapping of PC amplitudes between the omega-bar (sub 0)(lambda) PCA and I/F(lambda) PCA. We suggest that statistical analyses performed on I/ F(lambda) image cubes have limited applicability to the characterization of chromophores in the jovian atmosphere due to the sensitivity of 1/ F(lambda) to horizontal variations in the vertical aerosol distribution
Identification of novel pesticides for use against glasshouse invertebrate pests in UK tomatoes and peppers
To inform current and future pesticide availability to glasshouse vegetable growers, the current project trialled more than twenty products, including existing industry standards, against four key pests of glasshouse tomatoes and bell peppers. These included experimental conventional chemical pesticides as well as alternative biopesticide and biorational products based on phytochemicals, microbials and physically-acting substances. The results suggest that certain biopesticide products, particularly botanicals, provide good levels of pest control, with the same being true of experimental conventional chemical pesticides not yet recommended for use against these pests on these crops. Efforts are on-going to ensure that results of the current project translate to industry benefit via new pesticide approvals
A Vision for Ice Giant Exploration
From Voyager to a Vision for 2050: NASA and ESA have just completed a study of candidate missionsto Uranus and Neptune, the so-called ice giant planets. It is a Pre-Decadal Survey Study, meant to inform the next Planetary Science Decadal Survey about opportunities for missions launching in the 2020's and early 2030's. There have been no space flight missions to the ice giants since the Voyager 2 flybys of Uranus in 1986 and Neptune in 1989. This paper presents some conclusions of that study (hereafter referred to as The Study), and how the results feed into a vision for where planetary science can be in 2050. Reaching that vision will require investments in technology andground-based science in the 2020's, flight during the 2030's along with continued technological development of both ground- and space-based capabilities, and data analysis and additional flights in the 2040's. We first discuss why exploring the ice giants is important. We then summarize the science objectives identified by The Study, and our vision of the science goals for 2050. We then review some of the technologies needed to make this vision a reality
- …
