980 research outputs found
Factorizations of Elements in Noncommutative Rings: A Survey
We survey results on factorizations of non zero-divisors into atoms
(irreducible elements) in noncommutative rings. The point of view in this
survey is motivated by the commutative theory of non-unique factorizations.
Topics covered include unique factorization up to order and similarity, 2-firs,
and modular LCM domains, as well as UFRs and UFDs in the sense of Chatters and
Jordan and generalizations thereof. We recall arithmetical invariants for the
study of non-unique factorizations, and give transfer results for arithmetical
invariants in matrix rings, rings of triangular matrices, and classical maximal
orders as well as classical hereditary orders in central simple algebras over
global fields.Comment: 50 pages, comments welcom
Resource Requirements for Fault-Tolerant Quantum Simulation: The Transverse Ising Model Ground State
We estimate the resource requirements, the total number of physical qubits
and computational time, required to compute the ground state energy of a 1-D
quantum Transverse Ising Model (TIM) of N spin-1/2 particles, as a function of
the system size and the numerical precision. This estimate is based on
analyzing the impact of fault-tolerant quantum error correction in the context
of the Quantum Logic Array (QLA) architecture. Our results show that due to the
exponential scaling of the computational time with the desired precision of the
energy, significant amount of error correciton is required to implement the TIM
problem. Comparison of our results to the resource requirements for a
fault-tolerant implementation of Shor's quantum factoring algorithm reveals
that the required logical qubit reliability is similar for both the TIM problem
and the factoring problem.Comment: 19 pages, 8 figure
Fast Quantum Modular Exponentiation
We present a detailed analysis of the impact on modular exponentiation of
architectural features and possible concurrent gate execution. Various
arithmetic algorithms are evaluated for execution time, potential concurrency,
and space tradeoffs. We find that, to exponentiate an n-bit number, for storage
space 100n (twenty times the minimum 5n), we can execute modular exponentiation
two hundred to seven hundred times faster than optimized versions of the basic
algorithms, depending on architecture, for n=128. Addition on a neighbor-only
architecture is limited to O(n) time when non-neighbor architectures can reach
O(log n), demonstrating that physical characteristics of a computing device
have an important impact on both real-world running time and asymptotic
behavior. Our results will help guide experimental implementations of quantum
algorithms and devices.Comment: to appear in PRA 71(5); RevTeX, 12 pages, 12 figures; v2 revision is
substantial, with new algorithmic variants, much shorter and clearer text,
and revised equation formattin
Star Architecture as Socio-Material Assemblage
Taking inspiration from new materialism and assemblage, the chapter deals with star architects and iconic buildings as socio-material network effects that do not pre-exist action, but are enacted in practice, in the materiality of design crafting and city building. Star architects are here conceptualized as part of broader assemblages of actors and practices ‘making star architecture’ a reality, and the buildings they design are considered not just as unique and iconic objects, but dis-articulated as complex crafts mobilizing skills, technologies, materials, and forms of knowledge not necessarily ascribable to architecture. Overcoming narrow criticism focusing on the symbolic order of icons as unique creations and alienated repetitions of capitalist development, the chapter’s main aim is to widen the scope of critique by bridging culture and economy, symbolism and practicality, making star architecture available to a broad, fragmented arena of (potential) critics, unevenly equipped with critical tools and differentiated experiences
Implementing Shor's algorithm on Josephson Charge Qubits
We investigate the physical implementation of Shor's factorization algorithm
on a Josephson charge qubit register. While we pursue a universal method to
factor a composite integer of any size, the scheme is demonstrated for the
number 21. We consider both the physical and algorithmic requirements for an
optimal implementation when only a small number of qubits is available. These
aspects of quantum computation are usually the topics of separate research
communities; we present a unifying discussion of both of these fundamental
features bridging Shor's algorithm to its physical realization using Josephson
junction qubits. In order to meet the stringent requirements set by a short
decoherence time, we accelerate the algorithm by decomposing the quantum
circuit into tailored two- and three-qubit gates and we find their physical
realizations through numerical optimization.Comment: 12 pages, submitted to Phys. Rev.
The lesson of causal discovery algorithms for quantum correlations: Causal explanations of Bell-inequality violations require fine-tuning
An active area of research in the fields of machine learning and statistics
is the development of causal discovery algorithms, the purpose of which is to
infer the causal relations that hold among a set of variables from the
correlations that these exhibit. We apply some of these algorithms to the
correlations that arise for entangled quantum systems. We show that they cannot
distinguish correlations that satisfy Bell inequalities from correlations that
violate Bell inequalities, and consequently that they cannot do justice to the
challenges of explaining certain quantum correlations causally. Nonetheless, by
adapting the conceptual tools of causal inference, we can show that any attempt
to provide a causal explanation of nonsignalling correlations that violate a
Bell inequality must contradict a core principle of these algorithms, namely,
that an observed statistical independence between variables should not be
explained by fine-tuning of the causal parameters. In particular, we
demonstrate the need for such fine-tuning for most of the causal mechanisms
that have been proposed to underlie Bell correlations, including superluminal
causal influences, superdeterminism (that is, a denial of freedom of choice of
settings), and retrocausal influences which do not introduce causal cycles.Comment: 29 pages, 28 figs. New in v2: a section presenting in detail our
characterization of Bell's theorem as a contradiction arising from (i) the
framework of causal models, (ii) the principle of no fine-tuning, and (iii)
certain operational features of quantum theory; a section explaining why a
denial of hidden variables affords even fewer opportunities for causal
explanations of quantum correlation
Full Counting Statistics of Non-Commuting Variables: the Case of Spin Counts
We discuss the Full Counting Statistics of non-commuting variables with the
measurement of successive spin counts in non-collinear directions taken as an
example. We show that owing to an irreducible detector back-action, the FCS in
this case may be sensitive to the dynamics of the detectors, and may differ
from the predictions obtained with using a naive version of the Projection
Postulate. We present here a general model of detector dynamics and
path-integral approach to the evaluation of FCS. We concentrate further on a
simple "diffusive" model of the detector dynamics where the FCS can be
evaluated with transfer-matrix method. The resulting probability distribution
of spin counts is characterized by anomalously large higher cumulants and
substantially deviates from Gaussian Statistics.Comment: 11 pages, 3 figure
Bell Correlations and the Common Future
Reichenbach's principle states that in a causal structure, correlations of
classical information can stem from a common cause in the common past or a
direct influence from one of the events in correlation to the other. The
difficulty of explaining Bell correlations through a mechanism in that spirit
can be read as questioning either the principle or even its basis: causality.
In the former case, the principle can be replaced by its quantum version,
accepting as a common cause an entangled state, leaving the phenomenon as
mysterious as ever on the classical level (on which, after all, it occurs). If,
more radically, the causal structure is questioned in principle, closed
space-time curves may become possible that, as is argued in the present note,
can give rise to non-local correlations if to-be-correlated pieces of classical
information meet in the common future --- which they need to if the correlation
is to be detected in the first place. The result is a view resembling Brassard
and Raymond-Robichaud's parallel-lives variant of Hermann's and Everett's
relative-state formalism, avoiding "multiple realities."Comment: 8 pages, 5 figure
Layered architecture for quantum computing
We develop a layered quantum computer architecture, which is a systematic
framework for tackling the individual challenges of developing a quantum
computer while constructing a cohesive device design. We discuss many of the
prominent techniques for implementing circuit-model quantum computing and
introduce several new methods, with an emphasis on employing surface code
quantum error correction. In doing so, we propose a new quantum computer
architecture based on optical control of quantum dots. The timescales of
physical hardware operations and logical, error-corrected quantum gates differ
by several orders of magnitude. By dividing functionality into layers, we can
design and analyze subsystems independently, demonstrating the value of our
layered architectural approach. Using this concrete hardware platform, we
provide resource analysis for executing fault-tolerant quantum algorithms for
integer factoring and quantum simulation, finding that the quantum dot
architecture we study could solve such problems on the timescale of days.Comment: 27 pages, 20 figure
Quantum resource estimates for computing elliptic curve discrete logarithms
We give precise quantum resource estimates for Shor's algorithm to compute
discrete logarithms on elliptic curves over prime fields. The estimates are
derived from a simulation of a Toffoli gate network for controlled elliptic
curve point addition, implemented within the framework of the quantum computing
software tool suite LIQ. We determine circuit implementations for
reversible modular arithmetic, including modular addition, multiplication and
inversion, as well as reversible elliptic curve point addition. We conclude
that elliptic curve discrete logarithms on an elliptic curve defined over an
-bit prime field can be computed on a quantum computer with at most qubits using a quantum circuit of at most Toffoli gates. We are able to classically simulate the
Toffoli networks corresponding to the controlled elliptic curve point addition
as the core piece of Shor's algorithm for the NIST standard curves P-192,
P-224, P-256, P-384 and P-521. Our approach allows gate-level comparisons to
recent resource estimates for Shor's factoring algorithm. The results also
support estimates given earlier by Proos and Zalka and indicate that, for
current parameters at comparable classical security levels, the number of
qubits required to tackle elliptic curves is less than for attacking RSA,
suggesting that indeed ECC is an easier target than RSA.Comment: 24 pages, 2 tables, 11 figures. v2: typos fixed and reference added.
ASIACRYPT 201
- …
