3,311 research outputs found
Direct photon production with effective field theory
The production of hard photons in hadronic collisions is studied using
Soft-Collinear Effective Theory (SCET). This is the first application of SCET
to a physical, observable cross section involving energetic partons in more
than two directions. A factorization formula is derived which involves a
non-trivial interplay of the angular dependence in the hard and soft functions,
both quark and gluon jet functions, and multiple partonic channels. The
relevant hard, jet and soft functions are computed to one loop and their
anomalous dimensions are determined to three loops. The final resummed
inclusive direct photon distribution is valid to next-to-next-to-leading
logarithmic order (NNLL), one order beyond previous work. The result is
improved by including non-logarithmic terms and photon isolation cuts through
matching, and compared to Tevatron data and to fixed order results at the
Tevatron and the LHC. The resummed cross section has a significantly smaller
theoretical uncertainty than the next-to-leading fixed-order result,
particularly at high transverse momentum.Comment: 42 pages, 9 figures; v2: references added, minor changes; v3: typos;
v4: typos, corrections in (16), (47), (72
Resummation of heavy jet mass and comparison to LEP data
The heavy jet mass distribution in e+e- collisions is computed to
next-to-next-to-next-to leading logarithmic (NNNLL) and next-to-next-to leading
fixed order accuracy (NNLO). The singular terms predicted from the resummed
distribution are confirmed by the fixed order distributions allowing a precise
extraction of the unknown soft function coefficients. A number of quantitative
and qualitative comparisons of heavy jet mass and the related thrust
distribution are made. From fitting to ALEPH data, a value of alpha_s is
extracted, alpha_s(m_Z)=0.1220 +/- 0.0031, which is larger than, but not in
conflict with, the corresponding value for thrust. A weighted average of the
two produces alpha_s(m_Z) = 0.1193 +/- 0.0027, consistent with the world
average. A study of the non-perturbative corrections shows that the flat
direction observed for thrust between alpha_s and a simple non-perturbative
shape parameter is not lifted in combining with heavy jet mass. The Monte Carlo
treatment of hadronization gives qualitatively different results for thrust and
heavy jet mass, and we conclude that it cannot be trusted to add power
corrections to the event shape distributions at this accuracy. Whether a more
sophisticated effective field theory approach to power corrections can
reconcile the thrust and heavy jet mass distributions remains an open question.Comment: 33 pages, 14 figures. v2 added effect of lower numerical cutoff with
improved extraction of the soft function constants; power correction
discussion clarified. v3 small typos correcte
TrustShadow: Secure Execution of Unmodified Applications with ARM TrustZone
The rapid evolution of Internet-of-Things (IoT) technologies has led to an
emerging need to make it smarter. A variety of applications now run
simultaneously on an ARM-based processor. For example, devices on the edge of
the Internet are provided with higher horsepower to be entrusted with storing,
processing and analyzing data collected from IoT devices. This significantly
improves efficiency and reduces the amount of data that needs to be transported
to the cloud for data processing, analysis and storage. However, commodity OSes
are prone to compromise. Once they are exploited, attackers can access the data
on these devices. Since the data stored and processed on the devices can be
sensitive, left untackled, this is particularly disconcerting.
In this paper, we propose a new system, TrustShadow that shields legacy
applications from untrusted OSes. TrustShadow takes advantage of ARM TrustZone
technology and partitions resources into the secure and normal worlds. In the
secure world, TrustShadow constructs a trusted execution environment for
security-critical applications. This trusted environment is maintained by a
lightweight runtime system that coordinates the communication between
applications and the ordinary OS running in the normal world. The runtime
system does not provide system services itself. Rather, it forwards requests
for system services to the ordinary OS, and verifies the correctness of the
responses. To demonstrate the efficiency of this design, we prototyped
TrustShadow on a real chip board with ARM TrustZone support, and evaluated its
performance using both microbenchmarks and real-world applications. We showed
TrustShadow introduces only negligible overhead to real-world applications.Comment: MobiSys 201
Factorization and NNLL Resummation for Higgs Production with a Jet Veto
Using methods of effective field theory, we derive the first all-order
factorization theorem for the Higgs-boson production cross section with a jet
veto, imposed by means of a standard sequential recombination jet algorithm.
Like in the case of small-q_T resummation in Drell-Yan and Higgs production,
the factorization is affected by a collinear anomaly. Our analysis provides the
basis for a systematic resummation of large logarithms log(m_H/p_T^veto) beyond
leading-logarithmic order. Specifically, we present predictions for the
resummed jet-veto cross section and efficiency at next-to-next-to-leading
logarithmic order. Our results have important implications for Higgs-boson
searches at the LHC, where a jet veto is required to suppress background
events.Comment: 28 pages, 5 figures; v2: published version; note added in proo
Chiral symmetry and the axial nucleon to Delta(1232) transition form factors
We study the momentum and the quark mass dependence of the axial nucleon to
Delta(1232) transition form factors in the framework of non-relativistic chiral
effective field theory to leading-one-loop order. The outcome of our analysis
provides a theoretical guidance for chiral extrapolations of lattice QCD
results with dynamical fermions.Comment: 18 pages, 3 figure
Recommended from our members
Turning points: the personal and professional circumstances that lead academics to become middle managers
In the current higher education climate, there is a growing perception that the pressures associated with being an academic middle manager outweigh the perceived rewards of the position. This article investigates the personal and professional circumstances that lead academics to become middle managers by drawing on data from life history interviews undertaken with 17 male and female department heads from a range of disciplines, in a post-1992 UK university. The data suggests that experiencing conflict between personal and professional identities, manifested through different socialization experiences over time, can lead to a ‘turning point’ and a decision that affects a person’s career trajectory. Although the results of this study cannot be generalized, the findings may help other individuals and institutions move towards a firmer understanding of the academic who becomes head of department—in relation to theory, practice and research
A Matrix Model for \nu_{k_1k_2}=\frac{k_1+k_2}{k_1 k_2} Fractional Quantum Hall States
We propose a matrix model to describe a class of fractional quantum Hall
(FQH) states for a system of (N_1+N_2) electrons with filling factor more
general than in the Laughlin case. Our model, which is developed for FQH states
with filling factor of the form \nu_{k_1k_2}=\frac{k_1+k_2}{k_1k_2} (k_1 and
k_2 odd integers), has a U(N_1)\times U(N_2) gauge invariance, assumes that FQH
fluids are composed of coupled branches of the Laughlin type, and uses ideas
borrowed from hierarchy scenarios. Interactions are carried, amongst others, by
fields in the bi-fundamentals of the gauge group. They simultaneously play the
role of a regulator, exactly as does the Polychronakos field. We build the
vacuum configurations for FQH states with filling factors given by the series
\nu_{p_1p_2}=\frac{p_2}{p_1p_2-1}, p_1 and p_2 integers. Electrons are
interpreted as a condensate of fractional D0-branes and the usual degeneracy of
the fundamental state is shown to be lifted by the non-commutative geometry
behaviour of the plane. The formalism is illustrated for the state at
\nu={2/5}.Comment: 40 pages, 1 figure, clarifications and references adde
On the renormalization of multiparton webs
We consider the recently developed diagrammatic approach to soft-gluon
exponentiation in multiparton scattering amplitudes, where the exponent is
written as a sum of webs - closed sets of diagrams whose colour and kinematic
parts are entangled via mixing matrices. A complementary approach to
exponentiation is based on the multiplicative renormalizability of intersecting
Wilson lines, and their subsequent finite anomalous dimension. Relating this
framework to that of webs, we derive renormalization constraints expressing all
multiple poles of any given web in terms of lower-order webs. We examine these
constraints explicitly up to four loops, and find that they are realised
through the action of the web mixing matrices in conjunction with the fact that
multiple pole terms in each diagram reduce to sums of products of lower-loop
integrals. Relevant singularities of multi-eikonal amplitudes up to three loops
are calculated in dimensional regularization using an exponential infrared
regulator. Finally, we formulate a new conjecture for web mixing matrices,
involving a weighted sum over column entries. Our results form an important
step in understanding non-Abelian exponentiation in multiparton amplitudes, and
pave the way for higher-loop computations of the soft anomalous dimension.Comment: 60 pages, 15 figure
Pure Samples of Quark and Gluon Jets at the LHC
Having pure samples of quark and gluon jets would greatly facilitate the
study of jet properties and substructure, with many potential standard model
and new physics applications. To this end, we consider multijet and jets+X
samples, to determine the purity that can be achieved by simple kinematic cuts
leaving reasonable production cross sections. We find, for example, that at the
7 TeV LHC, the pp {\to} {\gamma}+2jets sample can provide 98% pure quark jets
with 200 GeV of transverse momentum and a cross section of 5 pb. To get 10 pb
of 200 GeV jets with 90% gluon purity, the pp {\to} 3jets sample can be used.
b+2jets is also useful for gluons, but only if the b-tagging is very efficient.Comment: 19 pages, 16 figures; v2 section on formally defining quark and gluon
jets has been adde
Factorization Properties of Soft Graviton Amplitudes
We apply recently developed path integral resummation methods to perturbative
quantum gravity. In particular, we provide supporting evidence that eikonal
graviton amplitudes factorize into hard and soft parts, and confirm a recent
hypothesis that soft gravitons are modelled by vacuum expectation values of
products of certain Wilson line operators, which differ for massless and
massive particles. We also investigate terms which break this factorization,
and find that they are subleading with respect to the eikonal amplitude. The
results may help in understanding the connections between gravity and gauge
theories in more detail, as well as in studying gravitational radiation beyond
the eikonal approximation.Comment: 35 pages, 5 figure
- …
