26,150 research outputs found
Enhanced magnetic field production during oblique hypervelocity impacts
The natural remanent magnetization of the lunar surface as displayed in returned lunar samples and the data returned by the Apollo subsatellite magnetometer has an unexpectedly high magnitude and exhibits spatial variation at all scales. The origin of the lunar remanent fields may be due to crustal remanence of a core dynamo field occurring early in lunar history prior to extensive modification by impact or remanence of transient fields, particularly associated with impacts, occurring on a local scale throughout lunar history. The presence of an early core dynamo field would have strong consequences for the formation and early evolution of the Moon, yet to deconvolve the role that an internally generated core dynamo field may have had, it is necessary to understand how the magnetic state of the lunar surface has developed through time. Impact-induced magnetism may be an important component of the present magnetic state of the lunar surface. New theoretical considerations suggest that transient magnetic fields within plasma produced by hypervelocity meteorite impacts may have greater significance at larger scales than previously thought
The spatial distribution and time evolution of impact-generated magnetic fields
The production of magnetic fields was revealed by laboratory hypervelocity impacts in easily vaporized targets. As quantified by pressure measurements, high frame-rate photography, and electrostatic probes, these impacts tend to produce large quantities of slightly ionized vapor, which is referred to as impact-generated plasma. Nonaligned electron density and temperature gradients within this plasma may lead to production of the observed magnetic fields. Past experiments were limited to measuring a single component of the impact-generated magnetic fields at only a few locations about the developing impact crater and consequently gave little information about the field production mechanism. To understand this mechanism, the techniques were extended to map the three components of the magnetic field both in space and time. By conducting many otherwise identical experiments with arrayed magnetic detectors, a preliminary 3-D picture was produced of impact-generated magnetic fields as they develop through time
Scaling and singularities in the entrainment of globally-coupled oscillators
The onset of collective behavior in a population of globally coupled
oscillators with randomly distributed frequencies is studied for phase
dynamical models with arbitrary coupling. The population is described by a
Fokker-Planck equation for the distribution of phases which includes the
diffusive effect of noise in the oscillator frequencies. The bifurcation from
the phase-incoherent state is analyzed using amplitude equations for the
unstable modes with particular attention to the dependence of the nonlinearly
saturated mode on the linear growth rate . In general
we find where is the
diffusion coefficient and is the mode number of the unstable mode. The
unusual factor arises from a singularity in the cubic term of
the amplitude equation.Comment: 11 pages (Revtex); paper submitted to Phys. Rev. Let
Recommended from our members
Potential impact of iodine on tropospheric levels of ozone and other critical oxidants
A new analysis of tropospheric iodine chemistry suggests that under certain conditions this chemistry could have a significant impact on the rate of destruction of tropospheric ozone. In addition, it suggests that modest shifts could result in the critical radical ratio HO2/OH. This analysis is based on the first ever observations of CH3I in the middle and upper free troposphere as recorded during the NASA Pacific Exploratory Mission in the western Pacific. Improved evaluations of several critical gas kinetic and photochemical rate coefficients have also been used. Three iodine source scenarios were explored in arriving at the above conclusions. These include: (1) the assumption that the release of CH3I from the marine environment was the only iodine source with boundary layer levels reflecting a low-productivity source region, (2) same as scenario 1 but with an additional marine iodine source in the form of higher molecular weight iodocarbons, and (3) source scenario 2 but with the release of all iodocarbons occurring in a region of high biological productivity. Based on one-dimensional model simulations, these three source scenarios resulted in estimated Ix (Ix =I + IO + HI + HOI + 2I2O2 +INOx) yields for the upper troposphere of 0.5, 1.5, and 7 parts per trillion by volume (pptv), respectively. Of these, only at the 1.5 and 7 pptv level were meaningful enhancements in O3 destruction estimated. Total column O3 destruction for these cases averaged 6 and 30%, respectively. At present we believe the 1.5 pptv Ix source scenario to be more typical of the tropical marine environment; however, for specific regions of the Pacific (i.e., marine upwelling regions) and for specific seasons of the year, much higher levels might be experienced. Even so, significant uncertainties still remain in the proposed iodine chemistry. In particular, much uncertainty remains in the magnitude of the marine iodine source. In addition, several rate coefficients for gas phase processes need further investigating, as does the efficiency for removal of iodine due to aerosol scavenging processes. Copyright 1996 by the American Geophysical Union
System and method for moving a probe to follow movements of tissue
An apparatus is described for moving a probe that engages moving living tissue such as a heart or an artery that is penetrated by the probe, which moves the probe in synchronism with the tissue to maintain the probe at a constant location with respect to the tissue. The apparatus includes a servo positioner which moves a servo member to maintain a constant distance from a sensed object while applying very little force to the sensed object, and a follower having a stirrup at one end resting on a surface of the living tissue and another end carrying a sensed object adjacent to the servo member. A probe holder has one end mounted on the servo member and another end which holds the probe
First principles study of hBN-AlN short-period superlattice heterostructures
We report a theoretical study of the structural, electronic and optical
properties of hBN-AlN superlattice heterostructures (SL) using a
first-principles approach based on standard and hybrid Density Functional
Theory. We consider short-period ( nm) SL and find that their properties
depend strongly on the AlN layer thickness . For
nm, AlN stabilizes into the hexagonal phase and SL display insulating behavior
with type II interface band alignment and optical gaps as small as eV.
The wurtzite phase forms for thicker AlN layers. In these cases built-in
electric fields lead to formation of polarization compensating charges as well
as two-dimensional conductive behavior for electronic transport along
interfaces. We also find defect-like states localized at interfaces which are
optically active in the visible range.Comment: 5 pages, 5 figures + Suppl. Mat., to appear in Appl. Phys. Let
- …
