3,807 research outputs found

    Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers

    Full text link
    We report on the experimental observation of two types of phase-locked vector soliton in weakly birefringent cavity erbium-doped fiber lasers. While a phase-locked dark-dark vector soliton was only observed in fiber lasers of positive dispersion, a phase-locked dark-bright vector soliton was obtained in fiber lasers of either positive or negative dispersion. Numerical simulations confirmed the experimental observations, and further showed that the observed vector solitons are the two types of phase-locked polarization domain-wall solitons theoretically predicted.Comment: 14 pages, 4 Figure

    Dressing Technique for Intermediate Hierarchies

    Full text link
    A generalized AKNS systems introduced and discussed recently in \cite{dGHM} are considered. It was shown that the dressing technique both in matrix pseudo-differential operators and formal series with respect to the spectral parameter can be developed for these hierarchies.Comment: 16 pages, LaTeX Report/no: DFTUZ/94/2

    Tests of Bayesian Model Selection Techniques for Gravitational Wave Astronomy

    Full text link
    The analysis of gravitational wave data involves many model selection problems. The most important example is the detection problem of selecting between the data being consistent with instrument noise alone, or instrument noise and a gravitational wave signal. The analysis of data from ground based gravitational wave detectors is mostly conducted using classical statistics, and methods such as the Neyman-Pearson criteria are used for model selection. Future space based detectors, such as the \emph{Laser Interferometer Space Antenna} (LISA), are expected to produced rich data streams containing the signals from many millions of sources. Determining the number of sources that are resolvable, and the most appropriate description of each source poses a challenging model selection problem that may best be addressed in a Bayesian framework. An important class of LISA sources are the millions of low-mass binary systems within our own galaxy, tens of thousands of which will be detectable. Not only are the number of sources unknown, but so are the number of parameters required to model the waveforms. For example, a significant subset of the resolvable galactic binaries will exhibit orbital frequency evolution, while a smaller number will have measurable eccentricity. In the Bayesian approach to model selection one needs to compute the Bayes factor between competing models. Here we explore various methods for computing Bayes factors in the context of determining which galactic binaries have measurable frequency evolution. The methods explored include a Reverse Jump Markov Chain Monte Carlo (RJMCMC) algorithm, Savage-Dickie density ratios, the Schwarz-Bayes Information Criterion (BIC), and the Laplace approximation to the model evidence. We find good agreement between all of the approaches.Comment: 11 pages, 6 figure

    Dispersionful analogues of Benney's equations and NN-wave systems

    Full text link
    We recall Krichever's construction of additional flows to Benney's hierarchy, attached to poles at finite distance of the Lax operator. Then we construct a ``dispersionful'' analogue of this hierarchy, in which the role of poles at finite distance is played by Miura fields. We connect this hierarchy with NN-wave systems, and prove several facts about the latter (Lax representation, Chern-Simons-type Lagrangian, connection with Liouville equation, τ\tau-functions).Comment: 12 pages, latex, no figure

    Random walks - a sequential approach

    Full text link
    In this paper sequential monitoring schemes to detect nonparametric drifts are studied for the random walk case. The procedure is based on a kernel smoother. As a by-product we obtain the asymptotics of the Nadaraya-Watson estimator and its as- sociated sequential partial sum process under non-standard sampling. The asymptotic behavior differs substantially from the stationary situation, if there is a unit root (random walk component). To obtain meaningful asymptotic results we consider local nonpara- metric alternatives for the drift component. It turns out that the rate of convergence at which the drift vanishes determines whether the asymptotic properties of the monitoring procedure are determined by a deterministic or random function. Further, we provide a theoretical result about the optimal kernel for a given alternative

    Detection of OH absorption against PSR B1849+00

    Full text link
    We have searched for OH absorption against seven pulsars using the Arecibo telescope. In both OH mainlines (at 1665 and 1667 MHz), deep and narrow absorption features were detected toward PSR B1849+00. In addition, we have detected several absorption and emission features against B33.6+0.1, a nearby supernova remnant (SNR). The most interesting result of this study is that a pencil-sharp absorption sample against the PSR differs greatly from the large-angle absorption sample observed against the SNR. If both the PSR and the SNR probe the same molecular cloud then this finding has important implications for absorption studies of the molecular medium, as it shows that the statistics of absorbing OH depends on the size of the background source. We also show that the OH absorption against the PSR most likely originates from a small (<30 arcsec) and dense (>10^5 cm^-3) molecular clump.Comment: 12 pages, 8 figures. Accepted for publication in Ap

    Detection of Cold Atomic Clouds in the Magellanic Bridge

    Get PDF
    We report a detection of cold atomic hydrogen in the Magellanic Bridge using 21-cm absorption spectroscopy toward the radio source B0312-770. With a column density of N_HI=1.2E20 cm^-2, a maximum absorption optical depth of tau=0.10 and a maximum 21-cm emission brightness temperature of 1.4 K, this line of sight yields a spin temperature, T_s, between 20 K and 40 K. H I 21-cm absorption and emission spectroscopy toward 7 other low column density sightlines on the periphery of the LMC and SMC reveal absorption toward one additional background radio source behind the SMC with tau=0.03. The data have typical sensitivities of sigma_tau=0.005 to 0.070 in absorption and sigma_{T_B}=0.03 K in emission. These data demonstrate the presence of a cold atomic phase which is probably accompanied by molecular condensations in the tenuous interstellar medium of the Bridge region. Young OB stars observed in the Magellanic Bridge could form "in situ" from these cold condensations rather than migrate from regions of active star formation in the main body of the SMC. The existence of cold condensations and star formation in the Magellanic Bridge might be understood as a small scale version of the mechanism that produces star formation in the tidal tails of interacting galaxies.Comment: 25 pages, uses AASTeX and psfig; Accepted for Publication in the Astronomical Journa

    Results on the Wess-Zumino consistency condition for arbitrary Lie algebras

    Full text link
    The so-called covariant Poincare lemma on the induced cohomology of the spacetime exterior derivative in the cohomology of the gauge part of the BRST differential is extended to cover the case of arbitrary, non reductive Lie algebras. As a consequence, the general solution of the Wess-Zumino consistency condition with a non trivial descent can, for arbitrary (super) Lie algebras, be computed in the small algebra of the 1 form potentials, the ghosts and their exterior derivatives. For particular Lie algebras that are the semidirect sum of a semisimple Lie subalgebra with an ideal, a theorem by Hochschild and Serre is used to characterize more precisely the cohomology of the gauge part of the BRST differential in the small algebra. In the case of an abelian ideal, this leads to a complete solution of the Wess-Zumino consistency condition in this space. As an application, the consistent deformations of 2+1 dimensional Chern-Simons theory based on iso(2,1) are rediscussed.Comment: 39 pages Latex file, 1 eps figure, typos and proof of lemma 5 correcte

    The Global Magneto-Ionic Medium Survey: Polarimetry of the Southern Sky from 300 to 480 MHz

    Get PDF
    Much data on the Galactic polarized radio emission has been gathered in the last five decades. All-sky surveys have been made, but only in narrow, widely spaced frequency bands, and the data are inadequate for the characterization of Faraday rotation, the main determinant of the appearance of the polarized radio sky at decimetre wavelengths. We describe a survey of the polarized radio emission from the Southern sky, aiming to characterize the magneto-ionic medium, particularly the strength and configuration of the magnetic field. This work is part of the Global Magneto-Ionic Medium Survey (GMIMS). We have designed and built a feed and receiver covering the band 300 to 900 MHz for the CSIRO Parkes 64-m Telescope. We have surveyed the entire sky between declinations -90 and +20 degrees. We present data covering 300 to 480 MHz with angular resolution 81' to 45'. The survey intensity scale is absolutely calibrated, based on measurements of resistors at known temperatures and on an assumed flux density and spectral index for Taurus A. Data are presented as brightness temperatures. We have applied Rotation Measure Synthesis to the data to obtain a Faraday depth cube of resolution 5.9 radians per metre squared, sensitivity of 60 mK of polarized intensity, and angular resolution 1.35 degrees. The data presented in this paper are available at the Canadian Astronomy Data Centre.Comment: Accepted for publication in the Astronomical Journal Modified 29th June 2019 to replace outdated doi: for access to dat
    corecore