36,210 research outputs found
Study of the Coulomb-Higgs transition in the Abelian Higgs Model
The order of the Coulomb-Higgs transition in the U(1)-Higgs model with
unfrozen modulus of the scalar field is studied. Large lattices (up to
in one case) and high statistics are used. We fix and explore
specially a region of -values where metastability is observed. We
study the thermodynamical limit of several observables, in particular, the
latent heat, the specific heat, the decrement of the free energy between the
maxima and the central minimum of the two-peaked histogram, the Binder cumulant
and the displacement of the critical coupling with the lattice size. The
results point towards a second order transition for ,
while for smaller values of the strong metastability growing with the
lattice size seems to derive from a first order character.Comment: 10 pages, Latex, epsfig, uuencoded gzipped tar file, 4 figures
include
Poisson approximations for the Ising model
A -dimensional Ising model on a lattice torus is considered. As the size
of the lattice tends to infinity, a Poisson approximation is given for the
distribution of the number of copies in the lattice of any given local
configuration, provided the magnetic field tends to and the
pair potential remains fixed. Using the Stein-Chen method, a bound is given
for the total variation error in the ferromagnetic case.Comment: 25 pages, 1 figur
RDF-TR: Exploiting structural redundancies to boost RDF compression
The number and volume of semantic data have grown impressively over the last decade, promoting compression as an essential tool for RDF preservation, sharing and management. In contrast to universal compressors, RDF compression techniques are able to detect and exploit specific forms of redundancy in RDF data. Thus, state-of-the-art RDF compressors excel at exploiting syntactic and semantic redundancies, i.e., repetitions in the serialization format and information that can be inferred implicitly. However, little attention has been paid to the existence of structural patterns within the RDF dataset; i.e. structural redundancy. In this paper, we analyze structural regularities in real-world datasets, and show three schema-based sources of redundancies that underpin the schema-relaxed nature of RDF. Then, we propose RDF-Tr (RDF Triples Reorganizer), a preprocessing technique that discovers and removes this kind of redundancy before the RDF dataset is effectively compressed. In particular, RDF-Tr groups subjects that are described by the same predicates, and locally re-codes the objects related to these predicates. Finally, we integrate
RDF-Tr with two RDF compressors, HDT and k2-triples. Our experiments show that using RDF-Tr with these compressors improves by up to 2.3 times their original effectiveness, outperforming the most prominent state-of-the-art techniques
A selective transformation of enals into chiral γ-amino alcohols.
A one-pot synthesis of chiral amino alcohols from α,β-unsaturated aldehydes is reported which circumvents competitive 1,2- versus 1,4-boryl addition, by means of using a sterically hindered amine-derived imine. In addition to the complete chemoselectivity, modification of the Cu(I) catalyst with readily available chiral diphosphines, such as (R)-DM-BINAP, gave the 1,4-boryl addition products with high levels of asymmetric induction
Transport properties of a meson gas
We present recent results on a systematic method to calculate transport
coefficients for a meson gas (in particular, we analyze a pion gas) at low
temperatures in the context of Chiral Perturbation Theory. Our method is based
on the study of Feynman diagrams with a power counting which takes into account
collisions in the plasma by means of a non-zero particle width. In this way, we
obtain results compatible with analysis of Kinetic Theory with just the leading
order diagram. We show the behavior with temperature of electrical and thermal
conductivities and shear and bulk viscosities, and we discuss the fundamental
role played by unitarity. We obtain that bulk viscosity is negligible against
shear viscosity near the chiral phase transition. Relations between the
different transport coefficients and bounds on them based on different
theoretical approximations are also discussed. We also comment on some
applications to heavy-ion collisions.Comment: 4 pages, 4 figures, IJMPE style. Contribution to the International
Workshop X Hadron Physics (2007), Florianopolis, Brazil. Accepted for
publication in IJMPE; 1 typo correcte
Pion scattering poles and chiral symmetry restoration
Using unitarized Chiral Perturbation Theory methods, we perform a detailed
analysis of the scattering poles and behaviour
when medium effects such as temperature or density drive the system towards
Chiral Symmetry Restoration. In the analysis of real poles below threshold, we
show that it is crucial to extend properly the unitarized amplitudes so that
they match the perturbative Adler zeros. Our results do not show threshold
enhancement effects at finite temperature in the channel, which
remains as a pole of broad nature. We also implement T=0 finite density effects
related to chiral symmetry restoration, by varying the pole position with the
pion decay constant. Although this approach takes into account only a limited
class of contributions, we reproduce the expected finite density restoration
behaviour, which drives the poles towards the real axis, producing threshold
enhancement and bound states. We compare our results with several
model approaches and discuss the experimental consequences, both in
Relativistic Heavy Ion Collisions and in and
reactions in nuclei.Comment: 17 pages, 9 figures, final version to appear in Phys.Rev.D, added
comments and reference
- …
