27,683 research outputs found
Grazing-angle scattering of electromagnetic waves in gratings with varying mean parameters: grating eigenmodes
A highly unusual pattern of strong multiple resonances for bulk
electromagnetic waves is predicted and analysed numerically in thick periodic
holographic gratings in a slab with the mean permittivity that is larger than
that of the surrounding media. This pattern is shown to exist in the geometry
of grazing-angle scattering (GAS), that is when the scattered wave (+1
diffracted order) in the slab propagates almost parallel to the slab (grating)
boundaries. The predicted resonances are demonstrated to be unrelated to
resonant generation of the conventional guided modes of the slab. Their
physical explanation is associated with resonant generation of a completely new
type of eigenmodes in a thick slab with a periodic grating. These new slab
eigenmodes are generically related to the grating; they do not exist if the
grating amplitude is zero. The field structure of these eigenmodes and their
dependence on structural and wave parameters is analysed. The results are
extended to the case of GAS of guided modes in a slab with a periodic groove
array of small corrugation amplitude and small variations in the mean thickness
of the slab at the array boundaries.Comment: 16 pages, 6 figure
Anisotropic multi-gap superfluid states in nuclear matter
It is shown that under changing density or temperature a nucleon Fermi
superfluid can undergo a phase transition to an anisotropic superfluid state,
characterized by nonvanishing gaps in pairing channels with singlet-singlet
(SS) and triplet-singlet (TS) pairing of nucleons (in spin and isospin spaces).
In the SS pairing channel nucleons are paired with nonzero orbital angular
momentum. Such two-gap states can arise as a result of branching from the
one-gap solution of the self-consistent equations, describing SS or TS pairing
of nucleons, that depends on the relationship between SS and TS coupling
constants at the branching point. The density/temperature dependence of the
order parameters and the critical temperature for transition to the anisotropic
two-gap state are determined in a model with the SkP effective interaction. It
is shown that the anisotropic SS-TS superfluid phase corresponds to a
metastable state in nuclear matter.Comment: Prepared with RevTeX4, 7p., 5 fi
Reconnection in Marginally Collisionless Accretion Disk Coronae
We point out that a conventional construction placed upon observations of
accreting black holes, in which their nonthermal X-ray spectra are produced by
inverse comptonization in a coronal plasma, suggests that the plasma is
marginally collisionless. Recent developments in plasma physics indicate that
fast reconnection takes place only in collisionless plasmas. As has recently
been suggested for the Sun's corona, such marginal states may result from a
combination of energy balance and the requirements of fast magnetic
reconnection.Comment: Revised in response to referee. Accepted ApJ. 11 pp., no figures.
Uses aastex 5.0
Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging
We introduce a new dynamic light scattering method, termed photon correlation
imaging, which enables us to resolve the dynamics of soft matter in space and
time. We demonstrate photon correlation imaging by investigating the slow
dynamics of a quasi two-dimensional coarsening foam made of highly packed,
deformable bubbles and a rigid gel network formed by dilute, attractive
colloidal particles. We find the dynamics of both systems to be determined by
intermittent rearrangement events. For the foam, the rearrangements extend over
a few bubbles, but a small dynamical correlation is observed up to macroscopic
length scales. For the gel, dynamical correlations extend up to the system
size. These results indicate that dynamical correlations can be extremely
long-ranged in jammed systems and point to the key role of mechanical
properties in determining their nature.Comment: Published version (Phys. Rev. Lett. 102, 085702 (2009)) The Dynamical
Activity Mapsprovided as Supplementary Online Material are also available on
http://w3.lcvn.univ-montp2.fr/~lucacip/dam/movies.ht
Off-resonance energy absorption in a linear Paul trap due to mass selective resonant quenching
Linear Paul r.f. ion traps (LPT) are used in many experimental studies such
as mass spectrometry, atom-ion collisions and ion-molecule reactions. Mass
selective resonant quenching (MSRQ) is implemented in LPT either to identify a
charged particle's mass or to remove unwanted ions from a controlled
experimental environment. In the latter case, MSRQ can introduce undesired
heating to co-trapped ions of different mass, whose secular motion is off
resonance with the quenching ac field, which we call off-resonance energy
absorption (OREA). We present simulations and experimental evidence that show
that the OREA increases exponentially with the number of ions loaded into the
trap and with the amplitude of the off-resonance external ac field.Comment: 14 figure
Experimental evidence of high-resolution ghost imaging and ghost diffraction with classical thermal light
High-resolution ghost image and ghost diffraction experiments are performed
by using a single source of thermal-like speckle light divided by a beam
splitter. Passing from the image to the diffraction result solely relies on
changing the optical setup in the reference arm, while leaving untouched the
object arm. The product of spatial resolutions of the ghost image and ghost
diffraction experiments is shown to overcome a limit which was formerly thought
to be achievable only with entangled photons.Comment: 5 pages, 4 figure
Asymptotics of Quantum Relative Entropy From Representation Theoretical Viewpoint
In this paper it was proved that the quantum relative entropy can be asymptotically attained by Kullback Leibler divergences of
probabilities given by a certain sequence of POVMs. The sequence of POVMs
depends on , but is independent of the choice of .Comment: LaTeX2e. 8 pages. The title was changed from "Asymptotic Attainment
for Quantum Relative Entropy
Immersive Composition for Sensory Rehabilitation: 3D Visualisation, Surround Sound, and Synthesised Music to Provoke Catharsis and Healing
There is a wide range of sensory therapies using sound, music and visual stimuli. Some focus on soothing or distracting stimuli such as natural sounds or classical music as analgesic, while other approaches emphasize the
active performance of producing music as therapy. This paper proposes an immersive
multi-sensory Exposure Therapy for people suffering from anxiety disorders, based on a rich, detailed surround-soundscape. This soundscape is composed to include the users’ own idiosyncratic anxiety triggers as a form of
habituation, and to provoke psychological catharsis, as a non-verbal, visceral and enveloping exposure. To accurately pinpoint the most effective sounds and to optimally compose the soundscape we will monitor the participants’ physiological responses such as electroencephalography, respiration, electromyography, and heart rate during exposure. We hypothesize that such physiologically optimized sensory landscapes will aid the development of future immersive therapies for various psychological conditions, Sound is a major trigger of anxiety, and auditory hypersensitivity is an extremely problematic symptom. Exposure to stress-inducing sounds can free anxiety sufferers from entrenched avoidance behaviors, teaching physiological coping strategies and encouraging resolution of the psychological issues agitated by the sound
RankPL: A Qualitative Probabilistic Programming Language
In this paper we introduce RankPL, a modeling language that can be thought of
as a qualitative variant of a probabilistic programming language with a
semantics based on Spohn's ranking theory. Broadly speaking, RankPL can be used
to represent and reason about processes that exhibit uncertainty expressible by
distinguishing "normal" from" surprising" events. RankPL allows (iterated)
revision of rankings over alternative program states and supports various types
of reasoning, including abduction and causal inference. We present the
language, its denotational semantics, and a number of practical examples. We
also discuss an implementation of RankPL that is available for download
Model-independent measurements of the sodium magneto-optical trap's excited-state population
We present model-independent measurements of the excited-state population of
atoms in a sodium (Na) magneto-optical trap (MOT) using a hybrid ion-neutral
trap composed of a MOT and a linear Paul trap (LPT). We photoionize excited Na
atoms trapped in the MOT and use two independent methods to measure the
resulting ions: directly by trapping them in our LPT, and indirectly by
monitoring changes in MOT fluorescence. By measuring the ionization rate via
these two independent methods, we have enough information to directly determine
the population of MOT atoms in the excited-state. The resulting measurement
reveals that there is a range of trapping-laser intensities where the
excited-state population of atoms in our MOT follows the standard two-level
model intensity-dependence. However, an experimentally determined effective
saturation intensity must be used instead of the theoretically predicted value
from the two-level model. We measured the effective saturation intensity to be
for the type-I Na MOT and
for the type-II Na MOT,
approximately 1.7 and 3.6 times the theoretical estimate, respectively. Lastly,
at large trapping-laser intensities, our experiment reveals a clear departure
from the two-level model at a critical intensity that we believe is due to a
state-mixing effect, whose critical intensity can be determined by a simple
power broadening model.Comment: 10 pages, 8 figure
- …
