46,425 research outputs found
Ceric and ferrous dosimeters show precision for 50-5000 rad range
Ammonium thiocyanate, added to the usual ferrous sulfate dosimeter solution, yielded a very stable, precise and temperature-independent system eight times as sensitive as the classical Fricke system in the 50 to 5000 rad range. The ceric dosimeters, promising for use in mixed radiation fields, respond nearly independently of LET
Spiral wave drift in an electric field and scroll wave instabilities
I present the numerical computation of speed and direction of the drift of a
spiral wave in an excitable medium in the presence of an electric field. In
contrast to earlier results, the drift speed presents a strong variation close
to the parameter value where the drift speed component along the field changes
direction. Using a simple phenomenological model and results from a numerical
linear stability analysis of scroll waves, I show this behavior can be
attributed to a resonance of the meander modes with the translation modes of
the spiral wave. Extending this phenomenological model to scroll waves also
clarifies the link between the drift and long wavelength instabilities of
scroll waves.Comment: Phys Rev E accepte
The effects on developing countries of the Kyoto Protocol and carbon dioxide emissions trading
The trading of rights to emit carbon dioxide has not officially been sanctioned by the United Nations Framework Convention on Climate Change, but it is of interest to investigate the consequences, both for industrial (Annex B) and developing countries, of allowing such trades. The authors examine the trading of caps assigned to Annex B countries under the Kyoto Protocol and compare the outcome with a world in which Annex B countries meet with their Kyoto targets without trading. Under the trading scenario the former Soviet Union is the main seller of carbon dioxide permits and Japan, the European Union, and the United States are the main buyers. Permit trading is estimated to reduce the aggregate cost of meeting the Kyoto targets by about 50 percent, compared with no trading. Developing countries, though they do not trade, are nonetheless affected by trading. For example, the price of oil and the demand for other developing country exports are higher with trading than without. The authors also consider what might happen if developing countries were to voluntarily accept caps equal to Business as Usual Emissions and were allowed to sell emission reductions below these caps to Annex B countries. The gains from emissions trading could be big enough to give buyers and sellers incentive to support the system. Indeed, a global market for rights to emit carbon dioxide could reduce the cost of meeting the Kyoto targets by almost 90 percent, if the market were to operate competitively. The division of trading gains, however, may make a competitive outcome unlikely: Under perfect competition, the vast majority of trading gains go to buyers of permits rather than to sellers. Even markets in which the supply of permits is restricted can, however, substantially reduce the cost to Annex B countries of meeting their Kyoto targets, while yielding profits to developing countries that elect to sell permits.Economic Theory&Research,Environmental Economics&Policies,Markets and Market Access,Montreal Protocol,Climate Change,Environmental Economics&Policies,Carbon Policy and Trading,Energy and Environment,Economic Theory&Research,Montreal Protocol
Fractional Fokker-Planck Equations for Subdiffusion with Space-and-Time-Dependent Forces
We have derived a fractional Fokker-Planck equation for subdiffusion in a
general space-and- time-dependent force field from power law waiting time
continuous time random walks biased by Boltzmann weights. The governing
equation is derived from a generalized master equation and is shown to be
equivalent to a subordinated stochastic Langevin equation.Comment: 5 page
On periodic water waves with Coriolis effects and isobaric streamlines
In this paper we prove that solutions of the f-plane approximation for
equatorial geophysical deep water waves, which have the property that the
pressure is constant along the streamlines and do not possess stagnation
points,are Gerstner-type waves. Furthermore, for waves traveling over a flat
bed, we prove that there are only laminar flow solutions with these properties.Comment: To appear in Journal of Nonlinear Mathematical Physics; 15 page
On the particle paths and the stagnation points in small-amplitude deep-water waves
In order to obtain quite precise information about the shape of the particle
paths below small-amplitude gravity waves travelling on irrotational deep
water, analytic solutions of the nonlinear differential equation system
describing the particle motion are provided. All these solutions are not closed
curves. Some particle trajectories are peakon-like, others can be expressed
with the aid of the Jacobi elliptic functions or with the aid of the
hyperelliptic functions. Remarks on the stagnation points of the
small-amplitude irrotational deep-water waves are also made.Comment: to appear in J. Math. Fluid Mech. arXiv admin note: text overlap with
arXiv:1106.382
Phase light curves for extrasolar Jupiters and Saturns
We predict how a remote observer would see the brightness variations of giant
planets similar to Jupiter and Saturn as they orbit their central stars. We
model the geometry of Jupiter, Saturn and Saturn's rings for varying orbital
and viewing parameters. Scattering properties for the planets and rings at
wavelenghts 0.6-0.7 microns follow Pioneer and Voyager observations, namely,
planets are forward scattering and rings are backward scattering. Images of the
planet with or without rings are simulated and used to calculate the
disk-averaged luminosity varying along the orbit, that is, a light curve is
generated. We find that the different scattering properties of Jupiter and
Saturn (without rings) make a substantial difference in the shape of their
light curves. Saturn-size rings increase the apparent luminosity of the planet
by a factor of 2-3 for a wide range of geometries. Rings produce asymmetric
light curves that are distinct from the light curve of the planet without
rings. If radial velocity data are available for the planet, the effect of the
ring on the light curve can be distinguished from effects due to orbital
eccentricity. Non-ringed planets on eccentric orbits produce light curves with
maxima shifted relative to the position of the maximum planet's phase. Given
radial velocity data, the amount of the shift restricts the planet's unknown
orbital inclination and therefore its mass. Combination of radial velocity data
and a light curve for a non-ringed planet on an eccentric orbit can also be
used to constrain the surface scattering properties of the planet. To summarize
our results for the detectability of exoplanets in reflected light, we present
a chart of light curve amplitudes of non-ringed planets for different
eccentricities, inclinations, and the viewing azimuthal angles of the observer.Comment: 40 pages, 13 figures, submitted to Ap.
Ephemeral properties and the illusion of microscopic particles
Founding our analysis on the Geneva-Brussels approach to quantum mechanics,
we use conventional macroscopic objects as guiding examples to clarify the
content of two important results of the beginning of twentieth century:
Einstein-Podolsky-Rosen's reality criterion and Heisenberg's uncertainty
principle. We then use them in combination to show that our widespread belief
in the existence of microscopic particles is only the result of a cognitive
illusion, as microscopic particles are not particles, but are instead the
ephemeral spatial and local manifestations of non-spatial and non-local
entities
Steady water waves with multiple critical layers: interior dynamics
We study small-amplitude steady water waves with multiple critical layers.
Those are rotational two-dimensional gravity-waves propagating over a perfect
fluid of finite depth. It is found that arbitrarily many critical layers with
cat's-eye vortices are possible, with different structure at different levels
within the fluid. The corresponding vorticity depends linearly on the stream
function.Comment: 14 pages, 3 figures. As accepted for publication in J. Math. Fluid
Mec
Distortion of the Stoner-Wohlfarth astroid by a spin-polarized current
The Stoner-Wohlfarth astroid is a fundamental object in magnetism. It
separates regions of the magnetic field space with two stable magnetization
equilibria from those with only one stable equilibrium and it characterizes the
magnetization reversal of nano-magnets induced by applied magnetic fields. On
the other hand, it was recently demonstrated that transfer of spin angular
momentum from a spin-polarized current provides an alternative way of switching
the magnetization. Here, we examine the astroid of a nano-magnet with uniaxial
magnetic anisotropy under the combined influence of applied fields and
spin-transfer torques. We find that spin-transfer is most efficient at
modifying the astroid when the external field is applied along the easy-axis of
magnetization. On departing from this situation, a threshold current appears
below which spin-transfer becomes ineffective yielding a current-induced dip in
the astroid along the easy-axis direction. An extension of the Stoner-Wohlfarth
model is outlined which accounts for this phenomenon.Comment: 8 pages, 6 figure
- …
