46,425 research outputs found

    Ceric and ferrous dosimeters show precision for 50-5000 rad range

    Get PDF
    Ammonium thiocyanate, added to the usual ferrous sulfate dosimeter solution, yielded a very stable, precise and temperature-independent system eight times as sensitive as the classical Fricke system in the 50 to 5000 rad range. The ceric dosimeters, promising for use in mixed radiation fields, respond nearly independently of LET

    Spiral wave drift in an electric field and scroll wave instabilities

    Full text link
    I present the numerical computation of speed and direction of the drift of a spiral wave in an excitable medium in the presence of an electric field. In contrast to earlier results, the drift speed presents a strong variation close to the parameter value where the drift speed component along the field changes direction. Using a simple phenomenological model and results from a numerical linear stability analysis of scroll waves, I show this behavior can be attributed to a resonance of the meander modes with the translation modes of the spiral wave. Extending this phenomenological model to scroll waves also clarifies the link between the drift and long wavelength instabilities of scroll waves.Comment: Phys Rev E accepte

    The effects on developing countries of the Kyoto Protocol and carbon dioxide emissions trading

    Get PDF
    The trading of rights to emit carbon dioxide has not officially been sanctioned by the United Nations Framework Convention on Climate Change, but it is of interest to investigate the consequences, both for industrial (Annex B) and developing countries, of allowing such trades. The authors examine the trading of caps assigned to Annex B countries under the Kyoto Protocol and compare the outcome with a world in which Annex B countries meet with their Kyoto targets without trading. Under the trading scenario the former Soviet Union is the main seller of carbon dioxide permits and Japan, the European Union, and the United States are the main buyers. Permit trading is estimated to reduce the aggregate cost of meeting the Kyoto targets by about 50 percent, compared with no trading. Developing countries, though they do not trade, are nonetheless affected by trading. For example, the price of oil and the demand for other developing country exports are higher with trading than without. The authors also consider what might happen if developing countries were to voluntarily accept caps equal to Business as Usual Emissions and were allowed to sell emission reductions below these caps to Annex B countries. The gains from emissions trading could be big enough to give buyers and sellers incentive to support the system. Indeed, a global market for rights to emit carbon dioxide could reduce the cost of meeting the Kyoto targets by almost 90 percent, if the market were to operate competitively. The division of trading gains, however, may make a competitive outcome unlikely: Under perfect competition, the vast majority of trading gains go to buyers of permits rather than to sellers. Even markets in which the supply of permits is restricted can, however, substantially reduce the cost to Annex B countries of meeting their Kyoto targets, while yielding profits to developing countries that elect to sell permits.Economic Theory&Research,Environmental Economics&Policies,Markets and Market Access,Montreal Protocol,Climate Change,Environmental Economics&Policies,Carbon Policy and Trading,Energy and Environment,Economic Theory&Research,Montreal Protocol

    Fractional Fokker-Planck Equations for Subdiffusion with Space-and-Time-Dependent Forces

    Get PDF
    We have derived a fractional Fokker-Planck equation for subdiffusion in a general space-and- time-dependent force field from power law waiting time continuous time random walks biased by Boltzmann weights. The governing equation is derived from a generalized master equation and is shown to be equivalent to a subordinated stochastic Langevin equation.Comment: 5 page

    On periodic water waves with Coriolis effects and isobaric streamlines

    Full text link
    In this paper we prove that solutions of the f-plane approximation for equatorial geophysical deep water waves, which have the property that the pressure is constant along the streamlines and do not possess stagnation points,are Gerstner-type waves. Furthermore, for waves traveling over a flat bed, we prove that there are only laminar flow solutions with these properties.Comment: To appear in Journal of Nonlinear Mathematical Physics; 15 page

    On the particle paths and the stagnation points in small-amplitude deep-water waves

    Full text link
    In order to obtain quite precise information about the shape of the particle paths below small-amplitude gravity waves travelling on irrotational deep water, analytic solutions of the nonlinear differential equation system describing the particle motion are provided. All these solutions are not closed curves. Some particle trajectories are peakon-like, others can be expressed with the aid of the Jacobi elliptic functions or with the aid of the hyperelliptic functions. Remarks on the stagnation points of the small-amplitude irrotational deep-water waves are also made.Comment: to appear in J. Math. Fluid Mech. arXiv admin note: text overlap with arXiv:1106.382

    Phase light curves for extrasolar Jupiters and Saturns

    Full text link
    We predict how a remote observer would see the brightness variations of giant planets similar to Jupiter and Saturn as they orbit their central stars. We model the geometry of Jupiter, Saturn and Saturn's rings for varying orbital and viewing parameters. Scattering properties for the planets and rings at wavelenghts 0.6-0.7 microns follow Pioneer and Voyager observations, namely, planets are forward scattering and rings are backward scattering. Images of the planet with or without rings are simulated and used to calculate the disk-averaged luminosity varying along the orbit, that is, a light curve is generated. We find that the different scattering properties of Jupiter and Saturn (without rings) make a substantial difference in the shape of their light curves. Saturn-size rings increase the apparent luminosity of the planet by a factor of 2-3 for a wide range of geometries. Rings produce asymmetric light curves that are distinct from the light curve of the planet without rings. If radial velocity data are available for the planet, the effect of the ring on the light curve can be distinguished from effects due to orbital eccentricity. Non-ringed planets on eccentric orbits produce light curves with maxima shifted relative to the position of the maximum planet's phase. Given radial velocity data, the amount of the shift restricts the planet's unknown orbital inclination and therefore its mass. Combination of radial velocity data and a light curve for a non-ringed planet on an eccentric orbit can also be used to constrain the surface scattering properties of the planet. To summarize our results for the detectability of exoplanets in reflected light, we present a chart of light curve amplitudes of non-ringed planets for different eccentricities, inclinations, and the viewing azimuthal angles of the observer.Comment: 40 pages, 13 figures, submitted to Ap.

    Ephemeral properties and the illusion of microscopic particles

    Full text link
    Founding our analysis on the Geneva-Brussels approach to quantum mechanics, we use conventional macroscopic objects as guiding examples to clarify the content of two important results of the beginning of twentieth century: Einstein-Podolsky-Rosen's reality criterion and Heisenberg's uncertainty principle. We then use them in combination to show that our widespread belief in the existence of microscopic particles is only the result of a cognitive illusion, as microscopic particles are not particles, but are instead the ephemeral spatial and local manifestations of non-spatial and non-local entities

    Steady water waves with multiple critical layers: interior dynamics

    Get PDF
    We study small-amplitude steady water waves with multiple critical layers. Those are rotational two-dimensional gravity-waves propagating over a perfect fluid of finite depth. It is found that arbitrarily many critical layers with cat's-eye vortices are possible, with different structure at different levels within the fluid. The corresponding vorticity depends linearly on the stream function.Comment: 14 pages, 3 figures. As accepted for publication in J. Math. Fluid Mec

    Distortion of the Stoner-Wohlfarth astroid by a spin-polarized current

    Full text link
    The Stoner-Wohlfarth astroid is a fundamental object in magnetism. It separates regions of the magnetic field space with two stable magnetization equilibria from those with only one stable equilibrium and it characterizes the magnetization reversal of nano-magnets induced by applied magnetic fields. On the other hand, it was recently demonstrated that transfer of spin angular momentum from a spin-polarized current provides an alternative way of switching the magnetization. Here, we examine the astroid of a nano-magnet with uniaxial magnetic anisotropy under the combined influence of applied fields and spin-transfer torques. We find that spin-transfer is most efficient at modifying the astroid when the external field is applied along the easy-axis of magnetization. On departing from this situation, a threshold current appears below which spin-transfer becomes ineffective yielding a current-induced dip in the astroid along the easy-axis direction. An extension of the Stoner-Wohlfarth model is outlined which accounts for this phenomenon.Comment: 8 pages, 6 figure
    corecore