631 research outputs found
Wind measurement system
A system for remotely measuring vertical and horizontal winds present in discrete volumes of air at selected locations above the ground is described. A laser beam is optically focused in range by a telescope, and the output beam is conically scanned at an angle about a vertical axis. The backscatter, or reflected light, from the ambient particulates in a volume of air, the focal volume, is detected for shifts in wavelength, and from these, horizontal and vertical wind components are computed
Room Temperature Continuous Wave Lasing in Nanopillar Photonic Crystal Cavities
We demonstrate room temperature continuous wave lasing in bottom-up photonic crystal cavities formed by patterned III-V nanopillars. Single-cell high-Q photonic crystal cavities are formed with nanopillars by selective-area epitaxy. Control of the nanopillar geometry and heterostructures allows for high-Q and large confinement factor, resulting in a low threshold power density of 75 W/cm^2 at 1040 nm emission wavelength
Amplitude dependent frequency, desynchronization, and stabilization in noisy metapopulation dynamics
The enigmatic stability of population oscillations within ecological systems
is analyzed. The underlying mechanism is presented in the framework of two
interacting species free to migrate between two spatial patches. It is shown
that that the combined effects of migration and noise cannot account for the
stabilization. The missing ingredient is the dependence of the oscillations'
frequency upon their amplitude; with that, noise-induced differences between
patches are amplified due to the frequency gradient. Migration among
desynchronized regions then stabilizes a "soft" limit cycle in the vicinity of
the homogenous manifold. A simple model of diffusively coupled oscillators
allows the derivation of quantitative results, like the functional dependence
of the desynchronization upon diffusion strength and frequency differences. The
oscillations' amplitude is shown to be (almost) noise independent. The results
are compared with a numerical integration of the marginally stable
Lotka-Volterra equations. An unstable system is extinction-prone for small
noise, but stabilizes at larger noise intensity
Excess noise in GaAs and AlGaAs avalanche photodiodes with GaSb absorption regions—composite structures grown using interfacial misfit arrays
Interfacial misfit arrays were embedded within two avalanche photodiode (APD) structures. This allowed GaSb absorption layers to be combined with wide-bandgap multiplication regions, consisting of GaAs and Al0.8Ga0.2As, respectively. The GaAs APD represents the simplest case. The Al0.8Ga0.2As APD shows reduced dark currents of 5.07 μAcm−2 at 90% of the breakdown voltage, and values for effective below 0.2. Random-path-length modeled excess noise is compared with experimental data, for both samples. The designs could be developed further, allowing operation to be extended to longer wavelengths, using other established absorber materials which are lattice matched to GaSb
An apoplastic peptide signal activates salicylic acid signalling in maize
Control of plant pathogen resistance or susceptibility largely depends on the promotion of either cell survival or cell death. In this context, papain-like cysteine proteases (PLCPs) regulate plant defence to drive cell death and protection against biotrophic pathogens. In maize (Zea mays), PLCPs are crucial in the orchestration of salicylic acid (SA)-dependent defence signalling. Despite this central role in immunity, it remains unknown how PLCPs are activated, and which downstream signals they induce to trigger plant immunity. Here, we present the discovery of an immune signalling peptide, Zea mays immune signalling peptide 1 (Zip1). A mass spectrometry approach identified the Zip1 peptide being produced after salicylic acid (SA) treatment. In vitro studies using recombinant proteins demonstrate that PLCPs are required to release bioactive Zip1 from its propeptide precursor (PROZIP1). Strikingly, Zip1 treatment strongly elicits SA accumulation in maize leaves. Moreover, RNAseq based transcriptome analyses revealed that Zip1 and SA treatments induce highly overlapping transcriptional changes. Consequently, Zip1 promotes the infection of the necrotrophic pathogen Botrytis cinerea in maize, while it reduces virulence of the biotrophic fungus Ustilago maydis. Together, Zip1 represents the previously missing signal that is released by PLCPs to activate SA defence signalling
Anomalous quantum confined Stark effects in stacked InAs/GaAs self-assembled quantum dots
Vertically stacked and coupled InAs/GaAs self-assembled quantum dots (SADs)
are predicted to exhibit a strong non-parabolic dependence of the interband
transition energy on the electric field, which is not encountered in single SAD
structures nor in other types of quantum structures. Our study based on an
eight-band strain-dependent Hamiltonian indicates that
this anomalous quantum confined Stark effect is caused by the three-dimensional
strain field distribution which influences drastically the hole states in the
stacked SAD structures.Comment: 4 pages, 4 figure
Router-level community structure of the Internet Autonomous Systems
The Internet is composed of routing devices connected between them and
organized into independent administrative entities: the Autonomous Systems. The
existence of different types of Autonomous Systems (like large connectivity
providers, Internet Service Providers or universities) together with
geographical and economical constraints, turns the Internet into a complex
modular and hierarchical network. This organization is reflected in many
properties of the Internet topology, like its high degree of clustering and its
robustness.
In this work, we study the modular structure of the Internet router-level
graph in order to assess to what extent the Autonomous Systems satisfy some of
the known notions of community structure. We show that the modular structure of
the Internet is much richer than what can be captured by the current community
detection methods, which are severely affected by resolution limits and by the
heterogeneity of the Autonomous Systems. Here we overcome this issue by using a
multiresolution detection algorithm combined with a small sample of nodes. We
also discuss recent work on community structure in the light of our results
Damage detection via shortest-path network sampling
Large networked systems are constantly exposed to local damages and failures that can alter their functionality. The knowledge of the structure of these systems is, however, often derived through sampling strategies whose effectiveness at damage detection has not been thoroughly investigated so far. Here, we study the performance of shortest-path sampling for damage detection in large-scale networks. We define appropriate metrics to characterize the sampling process before and after the damage, providing statistical estimates for the status of nodes (damaged, not damaged). The proposed methodology is flexible and allows tuning the trade-off between the accuracy of the damage detection and the number of probes used to sample the network. We test and measure the efficiency of our approach considering both synthetic and real networks data. Remarkably, in all of the systems studied, the number of correctly identified damaged nodes exceeds the number of false positives, allowing us to uncover the damage precisely
Engineering of quantum dot photon sources via electro-elastic fields
The possibility to generate and manipulate non-classical light using the
tools of mature semiconductor technology carries great promise for the
implementation of quantum communication science. This is indeed one of the main
driving forces behind ongoing research on the study of semiconductor quantum
dots. Often referred to as artificial atoms, quantum dots can generate single
and entangled photons on demand and, unlike their natural counterpart, can be
easily integrated into well-established optoelectronic devices. However, the
inherent random nature of the quantum dot growth processes results in a lack of
control of their emission properties. This represents a major roadblock towards
the exploitation of these quantum emitters in the foreseen applications. This
chapter describes a novel class of quantum dot devices that uses the combined
action of strain and electric fields to reshape the emission properties of
single quantum dots. The resulting electro-elastic fields allow for control of
emission and binding energies, charge states, and energy level splittings and
are suitable to correct for the quantum dot structural asymmetries that usually
prevent these semiconductor nanostructures from emitting polarization-entangled
photons. Key experiments in this field are presented and future directions are
discussed.Comment: to appear as a book chapter in a compilation "Engineering the
Atom-Photon Interaction" published by Springer in 2015, edited by A.
Predojevic and M. W. Mitchel
Analysis of congenital disorder of glycosylation-Id in a yeast model system shows diverse site-specific under-glycosylation of glycoproteins
Asparagine-linked glycosylation is a common post translational modification of proteins in eukaryotes. Mutations in the human ALG3 gene cause changed levels and altered glycan structures on mature glycoproteins and are the cause of a severe congenital disorder of glycosylation (CDG-Id). Diverse glycoproteins are also under-glycosylated in Saccharomyces cerevisae alg3 mutants. Here we analyzed site-specific glycosylation occupancy in this yeast model system using peptide-N-glycosidase F to label glycosylation sites with an asparagine-aspartate conversion that creates a new endoproteinase AspN cleavage site, followed by proteolytic digestion, and detection of peptides and glycopeptides by LC-ESI-MS/MS. We used this analytical method to identify and measure site specific glycosylation occupancy in alg3 mutant and wild type yeast strains. We found decreased site specific N-glycosylation occupancy in the alg3 knockout strain preferentially at Asn-Xaa-Ser sequences located in secondary structural elements, features previously associated with poor glycosylation efficiency. Furthermore, we identified 26 previously experimentally unverified glycosylation sites. Our results provide insights into the underlying mechanisms of disease in CDG-Id, and our methodology will be useful in site specific glycosylation analysis in many model systems and clinical applications
- …
