29,267 research outputs found

    Measuring the one-particle excitations of ultracold fermionic atoms by stimulated Raman spectroscopy

    Full text link
    We propose a Raman spectroscopy technique which is able to probe the one-particle Green's function, the Fermi surface, and the quasiparticles of a gas of strongly interacting ultracold atoms. We give quantitative examples of experimentally accessible spectra. The efficiency of the method is validated by means of simulated images for the case of a usual Fermi liquid as well as for more exotic states: specific signatures of e.g. a d-wave pseudo-gap are clearly visible.Comment: 5 pages, 3 figures accepted for publication at Phys. Rev. Letter

    Weighing the Cosmological Energy Contents with Weak Gravitational Lensing

    Get PDF
    Bernardeau et al. (1997), using perturbation theory, showed that the skewness of the large-scale lensing-convergence, or projected mass density, could be used to constrain Ωm\Omega_m, the matter content of the universe. On the other hand, deep weak-lensing field surveys in the near future will likely measure the convergence on small angular scales (< 10 arcmin.), where the signal will be dominated by highly nonlinear fluctuations. We develop a method to compute the small-scale convergence skewness, using a prescription for the highly nonlinear three-point function developed by Scoccimarro and Frieman (1998). This method gives predictions that agree well with existing results from ray-tracing N-body simulations, but is significantly faster, allowing the exploration of a large number of models. We demonstrate that the small-scale convergence skewness is insensitive to the shape and normalization of the primordial (CDM-type) power spectrum, making it dependent almost entirely on the cosmological energy contents, through their influence on the global geometrical distances and fluctuation growth rate. Moreover, nonlinear clustering appears to enhance the differences between predictions of the convergence skewness for a range of models. Hence, in addition to constraining Ωm\Omega_m, the small-scale convergence skewness from future deep several- degree-wide surveys can be used to differentiate between curvature dominated and cosmological constant (Λ\Lambda) dominated models, as well as to constrain the equation of state of a quintessence component, thereby distinguishing Λ\Lambda from quintessence as well. Finally, our method can be easily generalized to other measures such as aperture mass statistics.Comment: 13 pages, 2 ps figures, submitted to ApJ

    Magneto-Seebeck effect in spin-valve with in-plane thermal gradient

    Full text link
    We present measurements of magneto-Seebeck effect on a spin valve with in-plane thermal gradient. We measured open circuit voltage and short circuit current by applying a temperature gradient across a spin valve stack, where one of the ferromagnetic layers is pinned. We found a clear hysteresis in these two quantities as a function of magnetic field. From these measurements, the magneto-Seebeck effect was found to be 0.82%.Comment: 10 Pages, 7 figure

    Stability of Filters for the Navier-Stokes Equation

    Get PDF
    Data assimilation methodologies are designed to incorporate noisy observations of a physical system into an underlying model in order to infer the properties of the state of the system. Filters refer to a class of data assimilation algorithms designed to update the estimation of the state in a on-line fashion, as data is acquired sequentially. For linear problems subject to Gaussian noise filtering can be performed exactly using the Kalman filter. For nonlinear systems it can be approximated in a systematic way by particle filters. However in high dimensions these particle filtering methods can break down. Hence, for the large nonlinear systems arising in applications such as weather forecasting, various ad hoc filters are used, mostly based on making Gaussian approximations. The purpose of this work is to study the properties of these ad hoc filters, working in the context of the 2D incompressible Navier-Stokes equation. By working in this infinite dimensional setting we provide an analysis which is useful for understanding high dimensional filtering, and is robust to mesh-refinement. We describe theoretical results showing that, in the small observational noise limit, the filters can be tuned to accurately track the signal itself (filter stability), provided the system is observed in a sufficiently large low dimensional space; roughly speaking this space should be large enough to contain the unstable modes of the linearized dynamics. Numerical results are given which illustrate the theory. In a simplified scenario we also derive, and study numerically, a stochastic PDE which determines filter stability in the limit of frequent observations, subject to large observational noise. The positive results herein concerning filter stability complement recent numerical studies which demonstrate that the ad hoc filters perform poorly in reproducing statistical variation about the true signal

    Isolating Geometry in Weak Lensing Measurements

    Full text link
    Given a foreground galaxy-density field or shear field, its cross-correlation with the shear field from a background population of source galaxies scales with the source redshift in a way that is specific to lensing. Such a source-scaling can be exploited to effectively measure geometrical distances as a function of redshift and thereby constrain dark energy properties, free of any assumptions about the galaxy-mass/mass power spectrum (its shape, amplitude or growth). Such a geometrical method can yield a ~ 0.03 - 0.07 f_{sky}^{-1/2} measurement on the dark energy abundance and equation of state, for a photometric redshift accuracy of dz ~ 0.01 - 0.05 and a survey with median redshift of ~ 1. While these constraints are weaker than conventional weak lensing methods, they provide an important consistency check because the geometrical method carries less theoretical baggage: there is no need to assume any structure formation model (e.g. CDM). The geometrical method is at the most conservative end of a whole spectrum of methods which obtain smaller errorbars by making more restrictive assumptions -- we discuss some examples. Our geometrical approach differs from previous investigations along similar lines in three respects. First, the source-scaling we propose to use is less demanding on the photometric redshift accuracy. Second, the scaling works for both galaxy-shear and shear-shear correlations. Third, we find that previous studies underestimate the statistical errors associated with similar geometrical methods, the origin of which is discussed.Comment: 13 pages, 4 figures, submitted to Ap

    Long-term efficacy of an education programme in improving adherence with continuous positive airway pressure treatment for obstructive sleep apnoea

    Get PDF
    This randomised controlled trial demonstrated that a motivational enhancement programme composed of a single interview and a follow-up phone call at the initiation of continuous positive airway pressure treatment can improve treatment adherence in subjects with obstructive sleep apnoea, even after 1 year, and lead to better health outcome in terms of reducing daytime sleepiness.published_or_final_versio

    K2 Variable Catalogue: Variable Stars and Eclipsing Binaries in K2 Campaigns 1 and 0

    Get PDF
    We have created a catalogue of variable stars found from a search of the publicly available K2 mission data from Campaigns 1 and 0. This catalogue provides the identifiers of 8395 variable stars, including 199 candidate eclipsing binaries with periods up to 60d and 3871 periodic or quasi-periodic objects, with periods up to 20d for Campaign 1 and 15d for Campaign 0. Lightcurves are extracted and detrended from the available data. These are searched using a combination of algorithmic and human classification, leading to a classifier for each object as an eclipsing binary, sinusoidal periodic, quasi periodic, or aperiodic variable. The source of the variability is not identified, but could arise in the non-eclipsing binary cases from pulsation or stellar activity. Each object is cross-matched against variable star related guest observer proposals to the K2 mission, which specifies the variable type in some cases. The detrended lightcurves are also compared to lightcurves currently publicly available. The resulting catalogue is made available online via the MAST archive at https://archive.stsci.edu/prepds/k2varcat/, and gives the ID, type, period, semi-amplitude and range of the variation seen. We also make available the detrended lightcurves for each object.Comment: Accepted by A&A. 6 pages, 6 figures. Catalogue and lightcurves are available online via MAST at https://archive.stsci.edu/prepds/k2varcat

    Lensing Corrections to Features in the Angular Two-Point Correlation Function and Power Spectrum

    Full text link
    It is well known that magnification bias, the modulation of galaxy or quasar source counts by gravitational lensing, can change the observed angular correlation function. We investigate magnification-induced changes to the shape of the observed correlation function w(\theta) and the angular power spectrum C_{\ell}, paying special attention to the matter-radiation equality peak and the baryon wiggles. Lensing mixes the correlation function of the source galaxies with the matter correlation at the lower redshifts of the lenses. Since the lenses probe structure nearer to the observer, the angular scale dependence of the lensing terms is different from that of the sources, thus the observed correlation function is distorted. We quantify how the lensing corrections depend on the width of the selection function, the galaxy bias b, and the number count slope s. The correction increases with redshift and larger corrections are present for sources with steep number count slopes and/or broad redshift distributions. The most drastic changes to C_{\ell} occur for measurements at z >~1.5 and \ell <~ 100. For the source distributions we consider, magnification bias can shift the matter-radiation equality scale by 1-6% at z ~ 1.5 and by z ~ 3.5 the shift can be as large as 30%. The baryon bump in \theta^2w(\theta) is shifted by <~ 1% and the width is typically increased by ~10%. Shifts of >~ 0.5% and broadening of >~ 20% occur only for very broad selection functions and/or galaxies with (5s-2)/b>~2. However, near the baryon bump the magnification correction is not constant but a gently varying function which depends on the source population. Depending on how the w(\theta) data is fitted, this correction may need to be accounted for when using the baryon acoustic scale for precision cosmology.Comment: v2: 8 pages, 5 figures, text and figures condensed, references adde

    Landau gauge within the Gribov horizon

    Full text link
    We consider a model which effectively restricts the functional integral of Yang--Mills theories to the fundamental modular region. Using algebraic arguments, we prove that this theory has the same divergences as ordinary Yang Mills theory in the Landau gauge and that it is unitary. The restriction of the functional integral is interpreted as a kind of spontaneous breakdown of the BRSBRS symmetry.Comment: 17 pages, NYU-TH-93/10/0
    corecore