29,267 research outputs found
Measuring the one-particle excitations of ultracold fermionic atoms by stimulated Raman spectroscopy
We propose a Raman spectroscopy technique which is able to probe the
one-particle Green's function, the Fermi surface, and the quasiparticles of a
gas of strongly interacting ultracold atoms. We give quantitative examples of
experimentally accessible spectra. The efficiency of the method is validated by
means of simulated images for the case of a usual Fermi liquid as well as for
more exotic states: specific signatures of e.g. a d-wave pseudo-gap are clearly
visible.Comment: 5 pages, 3 figures accepted for publication at Phys. Rev. Letter
Weighing the Cosmological Energy Contents with Weak Gravitational Lensing
Bernardeau et al. (1997), using perturbation theory, showed that the skewness
of the large-scale lensing-convergence, or projected mass density, could be
used to constrain , the matter content of the universe. On the other
hand, deep weak-lensing field surveys in the near future will likely measure
the convergence on small angular scales (< 10 arcmin.), where the signal will
be dominated by highly nonlinear fluctuations. We develop a method to compute
the small-scale convergence skewness, using a prescription for the highly
nonlinear three-point function developed by Scoccimarro and Frieman (1998).
This method gives predictions that agree well with existing results from
ray-tracing N-body simulations, but is significantly faster, allowing the
exploration of a large number of models. We demonstrate that the small-scale
convergence skewness is insensitive to the shape and normalization of the
primordial (CDM-type) power spectrum, making it dependent almost entirely on
the cosmological energy contents, through their influence on the global
geometrical distances and fluctuation growth rate. Moreover, nonlinear
clustering appears to enhance the differences between predictions of the
convergence skewness for a range of models. Hence, in addition to constraining
, the small-scale convergence skewness from future deep several-
degree-wide surveys can be used to differentiate between curvature dominated
and cosmological constant () dominated models, as well as to constrain
the equation of state of a quintessence component, thereby distinguishing
from quintessence as well. Finally, our method can be easily
generalized to other measures such as aperture mass statistics.Comment: 13 pages, 2 ps figures, submitted to ApJ
Magneto-Seebeck effect in spin-valve with in-plane thermal gradient
We present measurements of magneto-Seebeck effect on a spin valve with
in-plane thermal gradient. We measured open circuit voltage and short circuit
current by applying a temperature gradient across a spin valve stack, where one
of the ferromagnetic layers is pinned. We found a clear hysteresis in these two
quantities as a function of magnetic field. From these measurements, the
magneto-Seebeck effect was found to be 0.82%.Comment: 10 Pages, 7 figure
Stability of Filters for the Navier-Stokes Equation
Data assimilation methodologies are designed to incorporate noisy
observations of a physical system into an underlying model in order to infer
the properties of the state of the system. Filters refer to a class of data
assimilation algorithms designed to update the estimation of the state in a
on-line fashion, as data is acquired sequentially. For linear problems subject
to Gaussian noise filtering can be performed exactly using the Kalman filter.
For nonlinear systems it can be approximated in a systematic way by particle
filters. However in high dimensions these particle filtering methods can break
down. Hence, for the large nonlinear systems arising in applications such as
weather forecasting, various ad hoc filters are used, mostly based on making
Gaussian approximations. The purpose of this work is to study the properties of
these ad hoc filters, working in the context of the 2D incompressible
Navier-Stokes equation. By working in this infinite dimensional setting we
provide an analysis which is useful for understanding high dimensional
filtering, and is robust to mesh-refinement. We describe theoretical results
showing that, in the small observational noise limit, the filters can be tuned
to accurately track the signal itself (filter stability), provided the system
is observed in a sufficiently large low dimensional space; roughly speaking
this space should be large enough to contain the unstable modes of the
linearized dynamics. Numerical results are given which illustrate the theory.
In a simplified scenario we also derive, and study numerically, a stochastic
PDE which determines filter stability in the limit of frequent observations,
subject to large observational noise. The positive results herein concerning
filter stability complement recent numerical studies which demonstrate that the
ad hoc filters perform poorly in reproducing statistical variation about the
true signal
Isolating Geometry in Weak Lensing Measurements
Given a foreground galaxy-density field or shear field, its cross-correlation
with the shear field from a background population of source galaxies scales
with the source redshift in a way that is specific to lensing. Such a
source-scaling can be exploited to effectively measure geometrical distances as
a function of redshift and thereby constrain dark energy properties, free of
any assumptions about the galaxy-mass/mass power spectrum (its shape, amplitude
or growth). Such a geometrical method can yield a ~ 0.03 - 0.07 f_{sky}^{-1/2}
measurement on the dark energy abundance and equation of state, for a
photometric redshift accuracy of dz ~ 0.01 - 0.05 and a survey with median
redshift of ~ 1. While these constraints are weaker than conventional weak
lensing methods, they provide an important consistency check because the
geometrical method carries less theoretical baggage: there is no need to assume
any structure formation model (e.g. CDM). The geometrical method is at the most
conservative end of a whole spectrum of methods which obtain smaller errorbars
by making more restrictive assumptions -- we discuss some examples. Our
geometrical approach differs from previous investigations along similar lines
in three respects. First, the source-scaling we propose to use is less
demanding on the photometric redshift accuracy. Second, the scaling works for
both galaxy-shear and shear-shear correlations. Third, we find that previous
studies underestimate the statistical errors associated with similar
geometrical methods, the origin of which is discussed.Comment: 13 pages, 4 figures, submitted to Ap
Long-term efficacy of an education programme in improving adherence with continuous positive airway pressure treatment for obstructive sleep apnoea
This randomised controlled trial demonstrated that a motivational enhancement programme composed of a single interview and a follow-up phone call at the initiation of continuous positive airway pressure treatment can improve treatment adherence in subjects with obstructive sleep apnoea, even after 1 year, and lead to better health outcome in terms of reducing daytime sleepiness.published_or_final_versio
K2 Variable Catalogue: Variable Stars and Eclipsing Binaries in K2 Campaigns 1 and 0
We have created a catalogue of variable stars found from a search of the
publicly available K2 mission data from Campaigns 1 and 0. This catalogue
provides the identifiers of 8395 variable stars, including 199 candidate
eclipsing binaries with periods up to 60d and 3871 periodic or quasi-periodic
objects, with periods up to 20d for Campaign 1 and 15d for Campaign 0.
Lightcurves are extracted and detrended from the available data. These are
searched using a combination of algorithmic and human classification, leading
to a classifier for each object as an eclipsing binary, sinusoidal periodic,
quasi periodic, or aperiodic variable. The source of the variability is not
identified, but could arise in the non-eclipsing binary cases from pulsation or
stellar activity. Each object is cross-matched against variable star related
guest observer proposals to the K2 mission, which specifies the variable type
in some cases. The detrended lightcurves are also compared to lightcurves
currently publicly available. The resulting catalogue is made available online
via the MAST archive at https://archive.stsci.edu/prepds/k2varcat/, and gives
the ID, type, period, semi-amplitude and range of the variation seen. We also
make available the detrended lightcurves for each object.Comment: Accepted by A&A. 6 pages, 6 figures. Catalogue and lightcurves are
available online via MAST at https://archive.stsci.edu/prepds/k2varcat
Lensing Corrections to Features in the Angular Two-Point Correlation Function and Power Spectrum
It is well known that magnification bias, the modulation of galaxy or quasar
source counts by gravitational lensing, can change the observed angular
correlation function. We investigate magnification-induced changes to the shape
of the observed correlation function w(\theta) and the angular power spectrum
C_{\ell}, paying special attention to the matter-radiation equality peak and
the baryon wiggles. Lensing mixes the correlation function of the source
galaxies with the matter correlation at the lower redshifts of the lenses.
Since the lenses probe structure nearer to the observer, the angular scale
dependence of the lensing terms is different from that of the sources, thus the
observed correlation function is distorted. We quantify how the lensing
corrections depend on the width of the selection function, the galaxy bias b,
and the number count slope s. The correction increases with redshift and larger
corrections are present for sources with steep number count slopes and/or broad
redshift distributions. The most drastic changes to C_{\ell} occur for
measurements at z >~1.5 and \ell <~ 100. For the source distributions we
consider, magnification bias can shift the matter-radiation equality scale by
1-6% at z ~ 1.5 and by z ~ 3.5 the shift can be as large as 30%. The baryon
bump in \theta^2w(\theta) is shifted by <~ 1% and the width is typically
increased by ~10%. Shifts of >~ 0.5% and broadening of >~ 20% occur only for
very broad selection functions and/or galaxies with (5s-2)/b>~2. However, near
the baryon bump the magnification correction is not constant but a gently
varying function which depends on the source population. Depending on how the
w(\theta) data is fitted, this correction may need to be accounted for when
using the baryon acoustic scale for precision cosmology.Comment: v2: 8 pages, 5 figures, text and figures condensed, references adde
Landau gauge within the Gribov horizon
We consider a model which effectively restricts the functional integral of
Yang--Mills theories to the fundamental modular region. Using algebraic
arguments, we prove that this theory has the same divergences as ordinary Yang
Mills theory in the Landau gauge and that it is unitary. The restriction of the
functional integral is interpreted as a kind of spontaneous breakdown of the
symmetry.Comment: 17 pages, NYU-TH-93/10/0
- …
