18,868 research outputs found
Plasma physics abstracts, 1 January 1966 through 31 December 1967
Bibliography containing 26 references with abstracts on plasma physics research, 1966-196
Chow's theorem and universal holonomic quantum computation
A theorem from control theory relating the Lie algebra generated by vector
fields on a manifold to the controllability of the dynamical system is shown to
apply to Holonomic Quantum Computation. Conditions for deriving the holonomy
algebra are presented by taking covariant derivatives of the curvature
associated to a non-Abelian gauge connection. When applied to the Optical
Holonomic Computer, these conditions determine that the holonomy group of the
two-qubit interaction model contains . In particular, a
universal two-qubit logic gate is attainable for this model.Comment: 13 page
Independent Orbiter Assessment (IOA): Analysis of the remote manipulator system
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Remote Manipulator System (RMS) are documented. The RMS hardware and software are primarily required for deploying and/or retrieving up to five payloads during a single mission, capture and retrieve free-flying payloads, and for performing Manipulator Foot Restraint operations. Specifically, the RMS hardware consists of the following components: end effector; displays and controls; manipulator controller interface unit; arm based electronics; and the arm. The IOA analysis process utilized available RMS hardware drawings, schematics and documents for defining hardware assemblies, components and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 574 failure modes analyzed, 413 were determined to be PCIs
Velocity field distributions due to ideal line vortices
We evaluate numerically the velocity field distributions produced by a
bounded, two-dimensional fluid model consisting of a collection of parallel
ideal line vortices. We sample at many spatial points inside a rigid circular
boundary. We focus on ``nearest neighbor'' contributions that result from
vortices that fall (randomly) very close to the spatial points where the
velocity is being sampled. We confirm that these events lead to a non-Gaussian
high-velocity ``tail'' on an otherwise Gaussian distribution function for the
Eulerian velocity field. We also investigate the behavior of distributions that
do not have equilibrium mean-field probability distributions that are uniform
inside the circle, but instead correspond to both higher and lower mean-field
energies than those associated with the uniform vorticity distribution. We find
substantial differences between these and the uniform case.Comment: 21 pages, 9 figures. To be published in Physical Review E
(http://pre.aps.org/) in May 200
A Self-Consistent Marginally Stable State for Parallel Ion Cyclotron Waves
We derive an equation whose solutions describe self-consistent states of
marginal stability for a proton-electron plasma interacting with
parallel-propagating ion cyclotron waves. Ion cyclotron waves propagating
through this marginally stable plasma will neither grow nor damp. The
dispersion relation of these waves, {\omega} (k), smoothly rises from the usual
MHD behavior at small |k| to reach {\omega} = {\Omega}p as k \rightarrow
\pm\infty. The proton distribution function has constant phase-space density
along the characteristic resonant surfaces defined by this dispersion relation.
Our equation contains a free function describing the variation of the proton
phase-space density across these surfaces. Taking this free function to be a
simple "box function", we obtain specific solutions of the marginally stable
state for a range of proton parallel betas. The phase speeds of these waves are
larger than those given by the cold plasma dispersion relation, and the
characteristic surfaces are more sharply peaked in the v\bot direction. The
threshold anisotropy for generation of ion cyclotron waves is also larger than
that given by estimates which assume bi-Maxwellian proton distributions.Comment: in press in Physics of Plasma
Numerical study of dynamo action at low magnetic Prandtl numbers
We present a three--pronged numerical approach to the dynamo problem at low
magnetic Prandtl numbers . The difficulty of resolving a large range of
scales is circumvented by combining Direct Numerical Simulations, a
Lagrangian-averaged model, and Large-Eddy Simulations (LES). The flow is
generated by the Taylor-Green forcing; it combines a well defined structure at
large scales and turbulent fluctuations at small scales. Our main findings are:
(i) dynamos are observed from down to ; (ii) the critical
magnetic Reynolds number increases sharply with as turbulence sets
in and then saturates; (iii) in the linear growth phase, the most unstable
magnetic modes move to small scales as is decreased and a Kazantsev
spectrum develops; then the dynamo grows at large scales and modifies
the turbulent velocity fluctuations.Comment: 4 pages, 4 figure
Independent Orbiter Assessment (IOA): Assessment of the remote manipulator system FMEA/CIL
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Remote Manipulator System (RMS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were than compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison for the Orbiter RMS hardware are documented. The IOA product for the RMS analysis consisted of 604 failure mode worksheets that resulted in 458 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 45 FMEAs and 321 CIL items. This comparison produced agreement on all but 154 FMEAs which caused differences in 137 CIL items
Power dissipation in nanoscale conductors: classical, semi-classical and quantum dynamics
Modelling Joule heating is a difficult problem because of the need to introduce correct correlations between the motions of the ions and the electrons. In this paper we analyse three different models of current induced heating (a purely classical model, a fully quantum model and a hybrid model in which the electrons are treated quantum mechanically and the atoms are treated classically). We find that all three models allow for both heating and cooling processes in the presence of a current, and furthermore the purely classical and purely quantum models show remarkable agreement in the limit of high biases. However, the hybrid model in the Ehrenfest approximation tends to suppress heating. Analysis of the equations of motion reveals that this is a consequence of two things: the electrons are being treated as a continuous fluid and the atoms cannot undergo quantum fluctuations. A means for correcting this is suggested
Viscous, resistive MHD stability computed by spectral techniques
Expansions in Chebyshev polynomials are used to study the linear stability of one dimensional magnetohydrodynamic (MHD) quasi-equilibria, in the presence of finite resistivity and viscosity. The method is modeled on the one used by Orszag in accurate computation of solutions of the Orr-Sommerfeld equation. Two Reynolds like numbers involving Alfven speeds, length scales, kinematic viscosity, and magnetic diffusivity govern the stability boundaries, which are determined by the geometric mean of the two Reynolds like numbers. Marginal stability curves, growth rates versus Reynolds like numbers, and growth rates versus parallel wave numbers are exhibited. A numerical result which appears general is that instability was found to be associated with inflection points in the current profile, though no general analytical proof has emerged. It is possible that nonlinear subcritical three dimensional instabilities may exist, similar to those in Poiseuille and Couette flow
Low magnetic Prandtl number dynamos with helical forcing
We present direct numerical simulations of dynamo action in a forced Roberts
flow. The behavior of the dynamo is followed as the mechanical Reynolds number
is increased, starting from the laminar case until a turbulent regime is
reached. The critical magnetic Reynolds for dynamo action is found, and in the
turbulent flow it is observed to be nearly independent on the magnetic Prandtl
number in the range from 0.3 to 0.1. Also the dependence of this threshold with
the amount of mechanical helicity in the flow is studied. For the different
regimes found, the configuration of the magnetic and velocity fields in the
saturated steady state are discussed.Comment: 9 pages, 14 figure
- …
