3,704 research outputs found
Matrix factorizations for nonaffine LG-models
We propose a natural definition of a category of matrix factorizations for
nonaffine Landau-Ginzburg models. For any LG-model we construct a fully
faithful functor from the category of matrix factorizations defined in this way
to the triangulated category of singularities of the corresponding fiber. We
also show that this functor is an equivalence if the total space of the
LG-model is smooth.Comment: 12 pages, minor corrections of TEX fil
Derived Categories of Coherent Sheaves and Triangulated Categories of Singularities
In this paper we establish an equivalence between the category of graded
D-branes of type B in Landau-Ginzburg models with homogeneous superpotential W
and the triangulated category of singularities of the fiber of W over zero. The
main result is a theorem that shows that the graded triangulated category of
singularities of the cone over a projective variety is connected via a fully
faithful functor to the bounded derived category of coherent sheaves on the
base of the cone. This implies that the category of graded D-branes of type B
in Landau-Ginzburg models with homogeneous superpotential W is connected via a
fully faithful functor to the derived category of coherent sheaves on the
projective variety defined by the equation W=0.Comment: 26 pp., LaTe
Derived categories of Burniat surfaces and exceptional collections
We construct an exceptional collection of maximal possible length
6 on any of the Burniat surfaces with , a 4-dimensional family of
surfaces of general type with . We also calculate the DG algebra of
endomorphisms of this collection and show that the subcategory generated by
this collection is the same for all Burniat surfaces.
The semiorthogonal complement of is an "almost
phantom" category: it has trivial Hochschild homology, and K_0(\mathcal
A)=\bZ_2^6.Comment: 15 pages, 1 figure; further remarks expande
Critical thermodynamics of two-dimensional N-vector cubic model in the five-loop approximation
The critical behavior of the two-dimensional N-vector cubic model is studied
within the field-theoretical renormalization-group (RG) approach. The
beta-functions and critical exponents are calculated in the five-loop
approximation, RG series obtained are resummed using Pade-Borel-Leroy and
conformal mapping techniques. It is found that for N = 2 the continuous line of
fixed points is well reproduced by the resummed RG series and an account for
the five-loop terms makes the lines of zeros of both beta-functions closer to
each another. For N > 2 the five-loop contributions are shown to shift the
cubic fixed point, given by the four-loop approximation, towards the Ising
fixed point. This confirms the idea that the existence of the cubic fixed point
in two dimensions under N > 2 is an artifact of the perturbative analysis. In
the case N = 0 the results obtained are compatible with the conclusion that the
impure critical behavior is controlled by the Ising fixed point.Comment: 18 pages, 4 figure
Semiorthogonal decompositions of derived categories of equivariant coherent sheaves
Let X be an algebraic variety with an action of an algebraic group G. Suppose
X has a full exceptional collection of sheaves, and these sheaves are invariant
under the action of the group. We construct a semiorthogonal decomposition of
bounded derived category of G-equivariant coherent sheaves on X into
components, equivalent to derived categories of twisted representations of the
group. If the group is finite or reductive over the algebraically closed field
of zero characteristic, this gives a full exceptional collection in the derived
equivariant category. We apply our results to particular varieties such as
projective spaces, quadrics, Grassmanians and Del Pezzo surfaces.Comment: 28 pages, uses XY-pi
Storage-ring measurement of the hyperfine induced 47Ti18+(2s 2p 3P0 -> 2s2 1S0) transition rate
The hyperfine induced 2s 2p 3P0 > 2s2 1S0 transition rate AHFI in
berylliumlike 47Ti18+ was measured. Resonant electron-ion recombination in a
heavy-ion storage ring was employed to monitor the time dependent population of
the 3P0 state. The experimental value AHFI=0.56(3)/s is almost 60% larger than
theoretically predicted.Comment: 4 pages. 3 figures, 1 table, accepted for publication in Physical
Review Letter
- …
