41,666 research outputs found
A General Expression for Symmetry Factors of Feynman Diagrams
The calculation of the symmetry factor corresponding to a given Feynman
diagram is well known to be a tedious problem. We have derived a simple formula
for these symmetry factors. Our formula works for any diagram in scalar theory
( and interactions), spinor QED, scalar QED, or QCD.Comment: RevTex 11 pages with 10 figure
Adaptive Sentence Boundary Disambiguation
Labeling of sentence boundaries is a necessary prerequisite for many natural
language processing tasks, including part-of-speech tagging and sentence
alignment. End-of-sentence punctuation marks are ambiguous; to disambiguate
them most systems use brittle, special-purpose regular expression grammars and
exception rules. As an alternative, we have developed an efficient, trainable
algorithm that uses a lexicon with part-of-speech probabilities and a
feed-forward neural network. After training for less than one minute, the
method correctly labels over 98.5\% of sentence boundaries in a corpus of over
27,000 sentence-boundary marks. We show the method to be efficient and easily
adaptable to different text genres, including single-case texts.Comment: This is a Latex version of the previously submitted ps file
(formatted as a uuencoded gz-compressed .tar file created by csh script). The
software from the work described in this paper is available by contacting
[email protected]
Seasonal variations in Greenland Ice Sheet motion : Inland extent and behaviour at higher elevations
Peer reviewedPreprin
MCMC-ODPR : primer design optimization using Markov Chain Monte Carlo sampling
Background
Next generation sequencing technologies often require numerous primer designs that require good target coverage that can be financially costly. We aimed to develop a system that would implement primer reuse to design degenerate primers that could be designed around SNPs, thus find the fewest necessary primers and the lowest cost whilst maintaining an acceptable coverage and provide a cost effective solution. We have implemented Metropolis-Hastings Markov Chain Monte Carlo for optimizing primer reuse. We call it the Markov Chain Monte Carlo Optimized Degenerate Primer Reuse (MCMC-ODPR) algorithm.
Results
After repeating the program 1020 times to assess the variance, an average of 17.14% fewer primers were found to be necessary using MCMC-ODPR for an equivalent coverage without implementing primer reuse. The algorithm was able to reuse primers up to five times. We compared MCMC-ODPR with single sequence primer design programs Primer3 and Primer-BLAST and achieved a lower primer cost per amplicon base covered of 0.21 and 0.19 and 0.18 primer nucleotides on three separate gene sequences, respectively. With multiple sequences, MCMC-ODPR achieved a lower cost per base covered of 0.19 than programs BatchPrimer3 and PAMPS, which achieved 0.25 and 0.64 primer nucleotides, respectively.
Conclusions
MCMC-ODPR is a useful tool for designing primers at various melting temperatures at good target coverage. By combining degeneracy with optimal primer reuse the user may increase coverage of sequences amplified by the designed primers at significantly lower costs. Our analyses showed that overall MCMC-ODPR outperformed the other primer-design programs in our study in terms of cost per covered base
Excimer lasers
The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage
A Pulsed Synchrotron for Muon Acceleration at a Neutrino Factory
A 4600 Hz pulsed synchrotron is considered as a means of accelerating cool
muons with superconducting RF cavities from 4 to 20 GeV/c for a neutrino
factory. Eddy current losses are held to less than a megawatt by the low
machine duty cycle plus 100 micron thick grain oriented silicon steel
laminations and 250 micron diameter copper wires. Combined function magnets
with 20 T/m gradients alternating within single magnets form the lattice. Muon
survival is 83%.Comment: 4 pages, 1 figures, LaTeX, 5th International Workshop on Neutrino
Factories and Superbeams (NuFact 03), 5-11 Jun 2003, New Yor
Verification of computer-aided designs of traveling-wave tubes utilizing novel dynamic refocusers and graphite electrodes for the multistage depressed collector
A computational procedure for the design of TWT-refocuser-MDC systems was used to design a short dynamic refocusing system and highly efficient four-stage depressed collector for a 200-W, 8- to 18-GHz, TWT. The computations were carried out with advanced, multidimensional computer programs which model the electron beam as a series of disks of charge and follow their trajectories from the RF input of the TWT, through the slow-wave structure and refocusing section, to their points of impact in the depressed collector. Secondary emission losses in the MDC were treated semi-quantitatively by injecting a representative beam of secondary electrons into the MDC analysis at the point of impact of each primary beam. A comparison of computed and measured TWT and MDC performance showed very good agreement. The electrodes of the MDC were fabricated from a particular form of isotropic graphite that was selected for its low secondary electron yield, ease of machinability, and vacuum properties. This MDC was tested (at CW) for more than 1000 hr with negligible degradation in TWT and MDC performances
Strongly-coupled quantum critical point in an all-in-all-out antiferromagnet
Dimensionality and symmetry play deterministic roles in the laws of Nature.
They are important tools to characterize and understand quantum phase
transitions, especially in the limit of strong correlations between spin,
orbit, charge, and structural degrees of freedom. Using newly-developed,
high-pressure resonant x-ray magnetic and charge diffraction techniques, we
have discovered a quantum critical point in Cd2Os2O7 as the all-in-all-out
(AIAO) antiferromagnetic order is continuously suppressed to zero temperature
and, concomitantly, the cubic lattice structure continuously changes from space
group Fd-3m to F-43m. Surrounded by three phases of different time reversal and
spatial inversion symmetries, the quantum critical region anchors two phase
lines of opposite curvature, with striking departures from a mean-field form at
high pressure. As spin fluctuations, lattice breathing modes, and quasiparticle
excitations interact in the quantum critical region, we argue that they present
the necessary components for strongly-coupled quantum criticality in this
three-dimensional compound
- …
