2,767 research outputs found
Decay of the Maxwell field on the Schwarzschild manifold
We study solutions of the decoupled Maxwell equations in the exterior region
of a Schwarzschild black hole. In stationary regions, where the Schwarzschild
coordinate ranges over , we obtain a decay rate of
for all components of the Maxwell field. We use vector field methods
and do not require a spherical harmonic decomposition.
In outgoing regions, where the Regge-Wheeler tortoise coordinate is large,
, we obtain decay for the null components with rates of
, , and . Along the event horizon and in ingoing regions, where ,
and when , all components (normalized with respect to an ingoing null
basis) decay at a rate of C \uout^{-1} with \uout=t+r_* in the exterior
region.Comment: 37 pages, 5 figure
Comparative study of radio pulses from simulated hadron-, electron-, and neutrino-initiated showers in ice in the GeV-PeV range
High energy particle showers produce coherent Cherenkov radio emission in
dense, radio-transparent media such as cold ice. Using PYTHIA and GEANT
simulation tools, we make a comparative study among electromagnetic (EM) and
hadronic showers initiated by single particles and neutrino showers initiated
by multiple particles produced at the neutrino-nucleon event vertex. We include
all the physics processes and do a complete 3-D simulation up to 100 TeV for
all showers and to 1 PeV for electron and neutrino induced showers. We
calculate the radio pulses for energies between 100 GeV and 1 PeV and find
hadron showers, and consequently neutrino showers, are not as efficient below 1
PeV at producing radio pulses as the electromagnetic showers. The agreement
improves as energy increases, however, and by a PeV and above the difference
disappears. By looking at the 3-D structure of the showers in time, we show
that the hadronic showers are not as compact as the EM showers and hence the
radiation is not as coherent as EM shower emission at the same frequency. We
show that the ratio of emitted pulse strength to shower tracklength is a
function only of a single, coherence parameter, independent of species and
energy of initiating particle.Comment: a few comments added, to bo published in PRD Nov. issue, 10 pages, 3
figures in tex file, 3 jpg figures in separate files, and 1 tabl
Efficient numerical diagonalization of hermitian 3x3 matrices
A very common problem in science is the numerical diagonalization of
symmetric or hermitian 3x3 matrices. Since standard "black box" packages may be
too inefficient if the number of matrices is large, we study several
alternatives. We consider optimized implementations of the Jacobi, QL, and
Cuppen algorithms and compare them with an analytical method relying on
Cardano's formula for the eigenvalues and on vector cross products for the
eigenvectors. Jacobi is the most accurate, but also the slowest method, while
QL and Cuppen are good general purpose algorithms. The analytical algorithm
outperforms the others by more than a factor of 2, but becomes inaccurate or
may even fail completely if the matrix entries differ greatly in magnitude.
This can mostly be circumvented by using a hybrid method, which falls back to
QL if conditions are such that the analytical calculation might become too
inaccurate. For all algorithms, we give an overview of the underlying
mathematical ideas, and present detailed benchmark results. C and Fortran
implementations of our code are available for download from
http://www.mpi-hd.mpg.de/~globes/3x3/ .Comment: 13 pages, no figures, new hybrid algorithm added, matches published
version, typo in Eq. (39) corrected; software library available at
http://www.mpi-hd.mpg.de/~globes/3x3
Cherenkov radio pulses from electromagnetic showers in the time-domain
The electric field of the Cherenkov radio pulse produced by a single charged
particle track in a dielectric medium is derived from first principles. An
algorithm is developed to obtain the pulse in the time domain for numerical
calculations. The algorithm is implemented in a Monte Carlo simulation of
electromagnetic showers in dense media (specifically designed for coherent
radio emission applications) as might be induced by interactions of ultra-high
energy neutrinos. The coherent Cherenkov radio emission produced by such
showers is obtained simultaneously both in the time and frequency domains. A
consistency check performed by Fourier-transforming the pulse in time and
comparing it to the frequency spectrum obtained directly in the simulations
yields, as expected, fully consistent results. The reversal of the time
structure inside the Cherenkov cone and the signs of the corresponding pulses
are addressed in detail. The results, besides testing algorithms used for
reference calculations in the frequency domain, shed new light into the
properties of the radio pulse in the time domain. The shape of the pulse in the
time domain is directly related to the depth development of the excess charge
in the shower and its width to the observation angle with respect to the
Cherenkov direction. This information can be of great practical importance for
interpreting actual data.Comment: 10 pages, 4 figure
Signatures of Pseudoscalar Photon Mixing in CMB Radiation
We model the effect of photon and ultra-light pseudoscalar mixing on the
propagation of electromagnetic radiation through the extragalactic medium. The
medium is modelled as a large number of magnetic domains, uncorrelated with one
another. We obtain an analytic expression for the different Stokes parameters
in the limit of small mixing angle. The different Stokes parameters are found
to increase linearly with the number of domains. We also verify this result by
direct numerical simulations. We use this formalism to estimate the effect of
pseudoscalar-photon mixing on the Cosmic Microwave Background (CMB)
polarization. We impose limits on the model parameters by the CMB observations.
We find that the currently allowed parameter range admits a CMB circular
polarization up to order .Comment: 17 pages, 5 figure
Recommended from our members
Tablet PCs in schools: Case study report: A report for Becta by the Open University
The publication provides an analysis of twelve case studies involving schools in England that were using Tablet PCs. The analysis is complemented by brief individual reports describing aspects of how each of these schools was using Tablet PCs
Radio Detection of High Energy Particles: Coherence Versus Multiple Scales
Radio Cherenkov emission underlines detection of high energy particles via a
signal growing like the particle-energy-squared. Cosmic ray-induced
electromagnetic showers are a primary application. While many studies have
treated the phenomenon approximately, none have attempted to incorporate all
the physical scales involved in problems with time- or spatially- evolving
charges. We find it is possible to decompose the calculated fields into the
product of a form factor, characterizing a moving charge distribution,
multiplying a general integral which depends on the charge evolution. In
circumstances of interest for cosmic ray physics, the resulting expressions can
be evaluated explicitely in terms of a few parameters obtainable from shower
codes. The classic issues of Frauhofer and Fresnel zones play a crucial role in
the coherence.Comment: 25 pages, 10 figure
Inverse Scattering for Gratings and Wave Guides
We consider the problem of unique identification of dielectric coefficients
for gratings and sound speeds for wave guides from scattering data. We prove
that the "propagating modes" given for all frequencies uniquely determine these
coefficients. The gratings may contain conductors as well as dielectrics and
the boundaries of the conductors are also determined by the propagating modes.Comment: 12 page
Relativistic Magnetic Monopole Flux Constraints from RICE
We report an upper limit on the flux of relativistic monopoles based on the
non-observation of in-ice showers by the Radio Ice Cherenkov Experiment (RICE)
at the South Pole. We obtain a 95% C.L. limit of order 10^{-18}/(cm^2-s-sr) for
intermediate mass monopoles of 10^7<gamma<10^{12} at the anticipated energy
E=10^{16} GeV. This bound is over an order of magnitude stronger than all
previously published experimental limits for this range of boost parameters
gamma, and exceeds two orders of magnitude improvement over most of the range.
We review the physics of radio detection, describe a Monte Carlo simulation
including continuous and stochastic energy losses, and compare to previous
experimental limits.Comment: 16 pages, 6 figures. Accepted for publication in Phys. Rev. D. Minor
revisions, including expanded discussion of monopole energy uncertaint
- …
