7,084 research outputs found
Training AAC users in user-centred design
User-centred design (UCD) with a focus on usability provides product developers with a design approach in which users are involved in every stage of the process: when gathering requirements; when evaluating alternative designs; and when evaluating interactive prototypes.The characteristics of people who use augmentative and alternative communication (AAC) make it difficult to follow a truly UCD approach, which in part may contribute to the high rejection of AAC devices. Training workshops have been delivered to introduce users and AAC professionals to the UCD process.Initial feedback indicates that they feel more empowered to evaluate systems and to engage in the design of new systems after attending the workshop
Alignment and Aperture Scan at the Fermilab Booster
The Fermilab booster has an intensity upgrade plan called the Proton
Improvement plan (PIP). The flux throughput goal is 2E17 protons/hour, which is
almost double the current operation at 1.1E17 protons/hour. The beam loss in
the machine is going to be the source of issues. The booster accelerates beam
from 400 MeV to 8 GeV and extracts to the Main Injector. Several percent of the
beam is lost within 3 msec after the injection. The aperture at injection
energy was measured and compared with the survey data. The magnets are going to
be realigned in March 2012 in order to increase the aperture. The beam studies,
analysis of the scan and alignment data, and the result of the magnet moves
will be discussed in this paper.Comment: 3 pp. 3rd International Particle Accelerator Conference (IPAC 2012)
20-25 May 2012, New Orleans, Louisian
Performance of AAOmega: the AAT multi-purpose fibre-fed spectrograph
AAOmega is the new spectrograph for the 2dF fibre-positioning system on the
Anglo-Australian Telescope. It is a bench-mounted, double-beamed design, using
volume phase holographic (VPH) gratings and articulating cameras. It is fed by
392 fibres from either of the two 2dF field plates, or by the 512 fibre SPIRAL
integral field unit (IFU) at Cassegrain focus. Wavelength coverage is 370 to
950nm and spectral resolution 1,000-8,000 in multi-Object mode, or 1,500-10,000
in IFU mode. Multi-object mode was commissioned in January 2006 and the IFU
system will be commissioned in June 2006.
The spectrograph is located off the telescope in a thermally isolated room
and the 2dF fibres have been replaced by new 38m broadband fibres. Despite the
increased fibre length, we have achieved a large increase in throughput by use
of VPH gratings, more efficient coatings and new detectors - amounting to a
factor of at least 2 in the red. The number of spectral resolution elements and
the maximum resolution are both more than doubled, and the stability is an
order of magnitude better.
The spectrograph comprises: an f/3.15 Schmidt collimator, incorporating a
dichroic beam-splitter; interchangeable VPH gratings; and articulating red and
blue f/1.3 Schmidt cameras. Pupil size is 190mm, determined by the competing
demands of cost, obstruction losses, and maximum resolution. A full suite of
VPH gratings has been provided to cover resolutions 1,000 to 7,500, and up to
10,000 at particular wavelengths.Comment: 13 pages, 4 figures; presented at SPIE, Astronomical Telescopes and
Instrumentation, 24 - 31 May 2006, Orlando, Florida US
The Role of Cognitive Factors in Predicting Balance and Fall Risk in a Neuro-Rehabilitation Setting
INTRODUCTION: There is a consistent body of evidence supporting the role of cognitive functions, particularly executive function, in the elderly and in neurological conditions which become more frequent with ageing. The aim of our study was to assess the role of different domains of cognitive functions to predict balance and fall risk in a sample of adults with various neurological conditions in a rehabilitation setting. METHODS: This was a prospective, cohort study conducted in a single centre in the UK. 114 participants consecutively admitted to a Neuro-Rehabilitation Unit were prospectively assessed for fall accidents. Baseline assessment included a measure of balance (Berg Balance Scale) and a battery of standard cognitive tests measuring executive function, speed of information processing, verbal and visual memory, visual perception and intellectual function. The outcomes of interest were the risk of becoming a faller, balance and fall rate. RESULTS: Two tests of executive function were significantly associated with fall risk, the Stroop Colour Word Test (IRR 1.01, 95% CI 1.00-1.03) and the number of errors on part B of the Trail Making Test (IRR 1.23, 95% CI 1.03-1.49). Composite scores of executive function, speed of information processing and visual memory domains resulted in 2 to 3 times increased likelihood of having better balance (OR 2.74 95% CI 1.08 to 6.94, OR 2.72 95% CI 1.16 to 6.36 and OR 2.44 95% CI 1.11 to 5.35 respectively). CONCLUSIONS: Our results show that specific subcomponents of executive functions are able to predict fall risk, while a more global cognitive dysfunction is associated with poorer balance
Reusable Agena study. Volume 2: Technical
The application of the existing Agena vehicle as a reusable upper stage for the space shuttle is discussed. The primary objective of the study is to define those changes to the Agena required for it to function in the reusable mode in the 100 percent capture of the NASA-DOD mission model. This 100 percent capture is achieved without use of kick motors or stages by simply increasing the Agena propellant load by using optional strap-on-tanks. The required shuttle support equipment, launch and flight operations techniques, development program, and cost package are also defined
New way to achieve chaotic synchronization in spatially extended systems
We study the spatio-temporal behavior of simple coupled map lattices with
periodic boundary conditions. The local dynamics is governed by two maps,
namely, the sine circle map and the logistic map respectively. It is found that
even though the spatial behavior is irregular for the regularly coupled
(nearest neighbor coupling) system, the spatially synchronized (chaotic
synchronization) as well as periodic solution may be obtained by the
introduction of three long range couplings at the cost of three nearest
neighbor couplings.Comment: 5 pages (revtex), 7 figures (eps, included
Recommended from our members
Diagnosing observation error correlations for Doppler radar radial winds in the Met Office UKV model using observation-minus-background and observation-minus-analysis statistics
With the development of convection-permitting numerical weather prediction the efficient use of high-resolution observations in data assimilation is becoming increasingly important. The operational assimilation of these observations, such as Doppler radar radial winds (DRWs), is now common, though to avoid violating the assumption of uncorrelated observation errors the observation density is severely reduced. To improve the quantity of observations used and the impact that they have on the forecast requires the introduction of the full, potentially correlated, error statistics. In this work, observation error statistics are calculated for the DRWs that are assimilated into the Met Office high-resolution UK model using a diagnostic that makes use of statistical averages of observation-minus-background and observation-minus-analysis residuals. This is the first in-depth study using the diagnostic to estimate both horizontal and along-beam observation error statistics. The new results obtained show that the DRW error standard deviations are similar to those used operationally and increase as the observation height increases. Surprisingly the estimated observation error correlation length-scales are longer than the operational thinning distance. They are dependent both on the height of the observation and on the distance of the observation away from the radar. Further tests show that the long correlations cannot be attributed to the background error covariance matrix used in the assimilation, although they are, in part, a result of using superobservations and a simplified observation operator. The inclusion of correlated error statistics in the assimilation allows less thinning of the data and hence better use of the high-resolution observations
Polygonal Structures in the Gaseous Disk: Numerical Simulations
The results of numerical simulations of a gaseous disk in the potential of a
stellar spiral density wave are presented. The conditions under which
straightened spiral arm segments (rows) form in the gas component are studied.
These features of the spiral structure were identified in a series of works by
A.D. Chernin with coauthors. Gas-dynamic simulations have been performed for a
wide range of model parameters: the pitch angle of the spiral pattern, the
amplitude of the stellar spiral density wave, the disk rotation speed, and the
temperature of the gas component. The results of 2D- and 3D-disk simulations
are compared. The rows in the numerical simulations are shown to be an
essentially nonstationary phenomenon. A statistical analysis of the
distribution of geometric parameters for spiral patterns with rows in the
observed galaxies and the constructed hydrodynamic models shows good agreement.
In particular, the numerical simulations and observations of galaxies give
for the average angles between straight segments.Comment: 22 pages, 10 figure
Oxo-aglaiastatin-mediated inhibition of translation initiation
We thank Dr. Elias George (McGill University) for the kind gift of Pgp-1-expressing HeLa cells. RIM was supported by a doctoral fellowship from the Cole Foundation. This research was supported by a grant from the Canadian Institutes of Health Research (FDN-148366) to JP. J.A.P., Jr. is supported by NIH Grant R35 GM118173. Work at the Boston University Center for Molecular Discovery is supported by Grant R24 GM111625. (Cole Foundation; FDN-148366 - Canadian Institutes of Health Research; R35 GM118173 - NIH; R24 GM111625)Published versionSupporting documentatio
- …
