7,360 research outputs found
Recommended from our members
Evaluation of BeYou plus an mHealth application to support self-management strategies for people living with HIV
Variability of subtropical upper tropospheric humidity
International audienceAnalysis of Atmospheric Infrared Sounder (AIRS) measurements for five northern winters shows significant longitudinal variations in subtropical upper tropospheric relative humidity (RH), not only in the climatological mean values but also in the local distributions and temporal variability. The largest climatological mean values in the northern subtropics occur over the eastern Pacific and Atlantic oceans, where there is also large day-to-day variability. In contrast, there are smaller mean values, and smaller variability that occurs at lower frequency, over the Indian and western Pacific oceans. These differences in the distribution and variability of subtropical RH are related to differences in the key transport processes in the different sectors. The large variability and intermittent high and low RH over the Eastern Pacific and Atlantic oceans, and to a smaller extent over the Indian ocean, are due to intrusions of high potential vorticity air into the subtropics. Intrusions seldom occur over the eastern Indian and western Pacific oceans, and here the subtropical RH is more closely linked to the location and strength of subtropical anticyclones. In this region there are eastward propagating features in the subtropical RH that are out of phase with the tropical RH, and are caused by modulation of the subtropical anticyclones by the Madden-Julian Oscillation
Transport and modeling of stratospheric inorganic chlorine
International audienceCorrectly modeling stratospheric inorganic chlorine (Cly) is crucial for modeling the past and future evolution of stratospheric ozone. However, comparisons of the chemistry climate models used in the latest international assessment of stratospheric ozone depletion have shown large differences in the modeled Cly, with these differences explaining differences in the simulated evolution of ozone over the next century. Here in, we examine the role of transport in determining the simulated Cly using three simulations from the same off-line chemical transport model that have the same lower tropospheric boundary conditions and the same chemical solver, but differing resolution and/or meteorological fields. These simulations show that transport plays a key role in determining the Cly distribution, and that Cly depends on both the time scales and pathways of transport. The time air spends in the stratosphere (e.g., the mean age) is an important transport factor determining stratospheric Cly, but the relationship between mean age and Cly is not simple. Lower stratospheric Cly depends on the fraction of air that has been in the upper stratosphere, and transport differences between models having the same mean age can result in differences in the fraction of organic chlorine converted into Cly. Differences in transport pathways result in differences in vertical profiles of CFCs, and comparisons of observed and modeled CFC profiles provides a stringent test of transport pathways in models
Bath generated work extraction and inversion-free gain in two-level systems
The spin-boson model, often used in NMR and ESR physics, quantum optics and
spintronics, is considered in a solvable limit to model a spin one-half
particle interacting with a bosonic thermal bath. By applying external pulses
to a non-equilibrium initial state of the spin, work can be extracted from the
thermalized bath. It occurs on the timescale \T_2 inherent to transversal
(`quantum') fluctuations. The work (partly) arises from heat given off by the
surrounding bath, while the spin entropy remains constant during a pulse. This
presents a violation of the Clausius inequality and the Thomson formulation of
the second law (cycles cost work) for the two-level system.
Starting from a fully disordered state, coherence can be induced by employing
the bath. Due to this, a gain from a positive-temperature (inversion-free)
two-level system is shown to be possible.Comment: 4 pages revte
A Spherically Symmetric Closed Universe as an Example of a 2D Dilatonic Model
We study the two-dimensional (2D) dilatonic model describing a massless
scalar field minimally coupled to the spherically reduced Einstein-Hilbert
gravity. The general solution of this model is given in the case when a Killing
vector is present. When interpreted in four dimensions, the solution describes
either a static or a homogeneous collision of incoming and outgoing null dust
streams with spherical symmetry. The homogeneous Universe is closed.Comment: 5 pages, 2 figures, to appear in Physical Review
Reducing Constraints on Quantum Computer Design by Encoded Selective Recoupling
The requirement of performing both single-qubit and two-qubit operations in
the implementation of universal quantum logic often leads to very demanding
constraints on quantum computer design. We show here how to eliminate the need
for single-qubit operations in a large subset of quantum computer proposals:
those governed by isotropic and XXZ,XY-type anisotropic exchange interactions.
Our method employs an encoding of one logical qubit into two physical qubits,
while logic operations are performed using an analogue of the NMR selective
recoupling method.Comment: 5 pages, 1 table, no figures. Published versio
Sensitivity of stratospheric inorganic chlorine to differences in transport
International audienceCorrectly modeling stratospheric inorganic chlorine (Cly) is crucial for modeling the past and future evolution of stratospheric ozone. However, comparisons of the chemistry climate models used in the latest international assessment of stratospheric ozone depletion have shown large differences in the modeled Cly, with these differences explaining many of the differences in the simulated evolution of ozone over the next century. Here in, we examine the role of transport in determining the simulated Cly using three simulations from the same off-line chemical transport model that have the same lower tropospheric boundary conditions and the same chemical solver, but differing resolution and/or meteorological fields. These simulations show that transport plays a key role in determining the Cly distribution, and that Cly depends on both the time scales and pathways of transport. The time air spends in the stratosphere (e.g., the mean age) is an important transport factor determining stratospheric Cly, but the relationship between mean age and Cly is not simple. Lower stratospheric Cly depends on the fraction of air that has been in the upper stratosphere, and transport differences between models having the same mean age can result in differences in the fraction of organic chlorine converted into Cly. Differences in transport pathways result in differences in vertical profiles of CFCs, and comparisons of observed and modeled CFC profiles provide a stringent test of transport pathways in models
- …
