385 research outputs found

    Electron-phonon coupling and superconductivity-induced distortion of the phonon lineshape in V3_3Si

    Full text link
    Phonon measurements in the A15-type superconductors were complicated in the past because of the unavailability of large single crystals for inelastic neutron scattering, e.g., in the case of Nb3_3Sn, or unfavorable neutron scattering properties in the case of V3_3Si. Hence, only few studies of the lattice dynamical properties with momentum resolved methods were published, in particular below the superconducting transition temperature TcT_c. Here, we overcome these problems by employing inelastic x-ray scattering and report a combined experimental and theoretical investigation of lattice dynamics in V3_3Si with the focus on the temperature-dependent properties of low-energy acoustic phonon modes in several high-symmetry directions. We paid particular attention to the evolution of the soft phonon mode of the structural phase transition observed in our sample at Ts=18.9KT_s=18.9\,\rm{K}, i.e., just above the measured superconducting phase transition at Tc=16.8KT_c=16.8\,\rm{K}. Theoretically, we predict lattice dynamics including electron-phonon coupling based on density-functional-perturbation theory and discuss the relevance of the soft phonon mode with regard to the value of TcT_c. Furthermore, we explain superconductivityinduced anomalies in the lineshape of several acoustic phonon modes using a model proposed by Allen et al., [Phys. Rev. B 56, 5552 (1997)]

    Fermi Surface of KFe2_2As2_2 from Quantum Oscillations in Magnetostriction

    Full text link
    We present a study of the Fermi surface of KFe2_2As2_2 single crystals. Quantum oscillations were observed in magnetostriction measured down to 50 mK and in magnetic fields HH up to 14 T. For HcH \parallel c, the calculated effective masses are in agreement with recent de Haas-van Alphen and ARPES experiments, showing enhanced values with respect to the ones obtained from previous band calculations. For HaH \parallel a, we observed a small orbit at a cyclotron frequency of 64 T, characterized by an effective mass of 0.8me\sim 0.8 m_e, supporting the presence of a three-dimensional pocket at the Z-point.Comment: SCES Conference, Tokyo 201

    Signatures of pressure induced superconductivity in insulating Bi2212

    Full text link
    We have performed several high pressure electrical resistance experiments on Bi1.98Sr2.06Y0.68Cu2O8, an insulating parent compound of the high-Tc Bi2212 family of copper oxide superconductors. We find a resistive anomaly, a downturn at low temperature, that onsets with applied pressure in the 20-40 kbar range. Through both resistance and magnetoresistance measurements, we identify this anomaly as a signature of induced superconductivity. Resistance to higher pressures decreases Tc, giving a maximum of 10 K. The higher pressure measurements exhibit a strong sensitivity to the hydrostaticity of the pressure environment. We make comparisons to the pressure induced superconductivity now ubiquitous in the iron arsenides.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Superconductivity in LnFePO (Ln = La, Pr, and Nd) single crystals

    Full text link
    Single crystals of the compounds LaFePO, PrFePO, and NdFePO have been prepared by means of a flux growth technique and studied by electrical resistivity, magnetic susceptibility and specific heat measurements. We have found that PrFePO and NdFePO display superconductivity with values of the superconducting critical temperature T_c of 3.2 K and 3.1 K, respectively. The effect of annealing on the properties of LaFePO, PrFePO, and NdFePO is also reported. The LnFePO (Ln = lanthanide) compounds are isostructural with the LnFeAsO_{1-x}F_x compounds that become superconducting with T_c values as high as 55 K for Ln = Sm. A systematic comparison of the occurrence of superconductivity in the series LnFePO and LnFeAsO_{1-x}F_x points to a possible difference in the origin of the superconductivity in these two series of compounds.Comment: submitted to the New Journal of Physic

    High-pressure study of non-Fermi liquid and spin-glass-like behavior in CeRhSn

    Full text link
    We present measurements of the temperature dependence of electrical resistivity of CeRhSn up to ~ 27 kbar. At low temperatures, the electrical resistivity varies linearly with temperature for all pressures, indicating non-Fermi liquid behavior. Below a temperature Tf ~ 6 K, the electrical resistivity deviates from a linear dependence. We found that the low-temperature feature centered at T = Tf shows a pressure dependence dTf/dP ~ 30 mK/kbar which is typical of canonical spin glasses. This interplay between spin-glass-like and non-Fermi liquid behavior was observed in both CeRhSn and a Ce0.9La0.1RhSn alloy.Comment: 5 pages, 3 figures, accepted for publication to Journal of Physics: Condensed Matte

    Lattice dynamical properties of superconducting SrPt3_3P studied via inelastic x-ray scattering and density functional perturbation theory

    Full text link
    We present a study of the lattice dynamical properties of superconducting SrPt3_3P (Tc=8.4T_c = 8.4 K) via high-resolution inelastic x-ray scattering (IXS) and ab initio calculations. Density functional perturbation theory including spin-orbit coupling (SOC) results in enhanced electron-phonon coupling (EPC) for the optic phonon modes originating from the Pt(I) atoms, with energies 5\sim 5 meV, resulting in a large EPC constant λ2\lambda \sim 2. An overall softening of the IXS powder spectra occurs from room to low temperatures, consistent with the predicted strong EPC and with recent specific-heat experiments (2Δ0/kBTc52\Delta_0 / k_{\mathrm{B}}T_c \sim 5). The low-lying phonon modes observed in the experiments are approximately 1.5 meV harder than the corresponding calculated phonon branch. Moreover, we do not find any changes in the spectra upon entering the superconducting phase. We conclude that current theoretical calculations underestimate the energy of the lowest band of phonon modes indicating that the coupling of these modes to the electronic subsystem is overestimated.Comment: 5 pages, 3 figure

    High pressure transport studies of the LiFeAs analogues CuFeTe2 and Fe2As

    Full text link
    We have synthesized two iron-pnictide/chalcogenide materials, CuFeTe2 and Fe2As, which share crystallographic features with known iron-based superconductors, and carried out high-pressure electrical resistivity measurements on these materials to pressures in excess of 30 GPa. Both compounds crystallize in the Cu2Sb-type crystal structure that is characteristic of LiFeAs (with CuFeTe2 exhibiting a disordered variant). At ambient pressure, CuFeTe2 is a semiconductor and has been suggested to exhibit a spin-density-wave transition, while Fe2As is a metallic antiferromagnet. The electrical resistivity of CuFeTe2, measured at 4 K, decreases by almost two orders of magnitude between ambient pressure and 2.4 GPa. At 34 GPa, the electrical resistivity decreases upon cooling the sample below 150 K, suggesting the proximity of the compound to a metal-insulator transition. Neither CuFeTe2 nor Fe2As superconduct above 1.1 K throughout the measured pressure range.Comment: 6 pages, 7 figure

    Bose-Einstein Condensation of S = 1 Ni spin degrees of freedom in NiCl2-4SC(NH2)2

    Full text link
    It has recently been suggested that the organic compound NiCl2_2-4SC(NH2_2)2_2 (DTN) exhibits Bose-Einstein Condensation (BEC) of the Ni spin degrees of freedom for fields applied along the tetragonal c-axis. The Ni spins exhibit 3D XY-type antiferromagnetic order above a field-induced quantum critical point at Hc12H_{c1} \sim 2 T. The Ni spin fluid can be characterized as a system of effective bosons with a hard-core repulsive interaction in which the antiferromagnetic state corresponds to a Bose-Einstein condensate (BEC) of the phase coherent S=1S = 1 Ni spin system. We have investigated the the high-field phase diagram and the occurrence of BEC in DTN by means of specific heat and magnetocaloric effect measurements to dilution refrigerator temperatures. Our results indicate that a key prediction of BEC is satisfied; the magnetic field-temperature quantum phase transition line Hc(T)Hc1TαH_c(T)-H_{c1} \propto T^\alpha approaches a power-law at low temperatures, with an exponent α=1.47±0.06\alpha = 1.47 \pm 0.06 at the quantum critical point, consistent with the BEC theory prediction of α=1.5\alpha = 1.5.Comment: 4 pages, 4 figure

    Superconductivity and Magnetism in REFeAsO1-xFx (RE=Rare Earth Elements)

    Full text link
    Fluoride-doped iron-based oxypnictides containing rare-earth gadolinium (GdFeAsO0.8F0.2) and co-doping with yttrium (Gd0.8Y0.2FeAsO0.8F0.2) have been prepared via conventional solid state reaction at ambient pressure. The non-yttrium substituted oxypnictide show superconducting transition as high as 43.9 K from temperature dependent resistance measurements with the Meissner effect observed at a lower temperature of 40.8 K from temperature dependent magnetization measurements. By replacing a small amount of gadolinium with yttrium Tc was observed to be lowered by 10 K which might be caused by a change in the electronic or magnetic structures since the crystal structure was not altered.Comment: 4 pages, 4 figures, Journal of Physics: Conference Series (Proceedings in the LT25 Low Temperature Physics Conference) Submitte
    corecore