2,666 research outputs found

    Observation of the Holstein shift in high TcT_c superconductors with thermal modulation reflectometry

    Full text link
    We use the experimental technique of thermal modulation reflectometry to study the relatively small temperature dependence of the optical conductivity of superconductors. Due to a large cancellation of systematic errors, this technique is shown to a be very sensitive probe of small changes in reflectivity. We analyze thermal modulation reflection spectra of single crystals and epitaxially grown thin films of YBa2_2Cu3_3O7δ_{7-\delta} and obtain the αtr2F(ω){\alpha_tr}^2F(\omega) function in the normal state, as well as the superconductivity induced changes in reflectivity. We present detailed model calculations, based on the Eliashberg-Migdal extension of the BCS model, which show good qualitative and quantitative agreement with the experimental spectra. VSGD.93.12.thComment: 6 pages, figures on request. Revtex, version 2, Materials Science Center Internal Report Number VSGD.93.12.t

    A Study For Efficiently Solving Optimisation Problems With An Increasing Number Of Design Variables

    Get PDF
    Coupling optimisation algorithms to Finite Element Methods (FEM) is a very promising way to achieve optimal metal forming processes. However, many optimisation algorithms exist and it is not clear which of these algorithms to use. This paper investigates the sensitivity of a Sequential Approximate Optimisation algorithm (SAO) proposed in [1-4] to an increasing number of design variables and compares it with two other algorithms: an Evolutionary Strategy (ES) and an Evolutionary version of the SAO (ESAO). In addition, it observes the influence of different Designs Of Experiments used with the SAO. It is concluded that the SAO is very capable and efficient and its combination with an ES is not beneficial. Moreover, the use of SAO with Fractional Factorial Design is the most efficient method, rather than Full Factorial Design as proposed in [1-4]

    Chemical Modelling of Young Stellar Objects, I. Method and Benchmarks

    Full text link
    Upcoming facilities such as the Herschel Space Observatory or ALMA will deliver a wealth of molecular line observations of young stellar objects (YSOs). Based on line fluxes, chemical abundances can then be estimated by radiative transfer calculations. To derive physical properties from abundances, the chemical network needs to be modeled and fitted to the observations. This modeling process is however computationally exceedingly demanding, particularly if in addition to density and temperature, far UV (FUV) irradiation, X-rays, and multi-dimensional geometry have to be considered. We develop a fast tool, suitable for various applications of chemical modeling in YSOs. A grid of the chemical composition of the gas having a density, temperature, FUV irradiation and X-ray flux is pre-calculated as a function of time. A specific interpolation approach is developed to reduce the database to a feasible size. Published models of AFGL 2591 are used to verify the accuracy of the method. A second benchmark test is carried out for FUV sensitive molecules. The novel method for chemical modeling is more than 250,000 times faster than direct modeling and agrees within a mean factor of 1.35. The tool is distributed for public use. In the course of devloping the method, the chemical evolution is explored: We find that X-ray chemistry in envelopes of YSOs can be reproduced by means of an enhanced cosmic-ray ionization rate. We further find that the abundance of CH+ in low-density gas with high ionization can be enhanced by the recombination of doubly ionized carbon (C++) and suggest a new value for the initial abundance of the main sulphur carrier in the hot-core.Comment: Accepted by ApJS. 24 pages, 15 figures. A version with higher resolution images is available from http://www.astro.phys.ethz.ch/staff/simonbr/papgridI.pdf . Online data available at http://www.astro.phys.ethz.ch/chemgrid.html . Second paper of this series of papers available at arXiv:0906.058

    Possible flakes of molecular hydrogen in the early Universe

    Get PDF
    The thermochemistry of H2 and HD in non-collapsed, non-reionized primordial gas up to the end of the dark age is investigated with recent radiation-matter and chemical reaction rates taking into account the efficient coolant HD, and the possibility of a gas-solid phase transition of H2. In the standard big-bang model we find that these molecules can freeze out and lead to the growth of flakes of solid molecular hydrogen at redshifts z ~ 6-12 in the unperturbed medium and under-dense regions. While this freezing caused by the mere adiabatic cooling of the expanding matter is less likely to occur in collapsed regions due to their higher than radiation background temperature, on the other hand the super-adiabatic expansion in voids strongly favors it. Later reionization (at z ~ 5-6) eventually destroys all these H2 flakes. The possible occurrence of H2 flakes is important for the degree of coupling between matter and radiation, as well as for the existence of a gas-grain chemistry at the end of the dark age.Comment: Accepted for publication to Astronomy and Astrophysic

    Superpartner spectrum of minimal gaugino-gauge mediation

    Full text link
    We evaluate the sparticle mass spectrum in the minimal four-dimensional construction that interpolates between gaugino and ordinary gauge mediation at the weak scale. We find that even in the hybrid case -- when the messenger scale is comparable to the mass of the additional gauge particles -- both the right-handed as well as the left-handed sleptons are lighter than the bino in the low-scale mediation regime. This implies a chain of lepton production and, consequently, striking signatures that may be probed at the LHC already in the near future.Comment: 8 pages, 3 figures; V2: refs and a few comments added; V3 title change

    The Energetics of Molecular Gas in NGC 891 from H2 and FIR Spectroscopy

    Get PDF
    We have studied the molecular hydrogen energetics of the edge-on spiral galaxy NGC\,891, using a 34-position map in the lowest three pure rotational H2_2 lines observed with the Spitzer Infrared Spectrograph. The S(0), S(1), and S(2) lines are bright with an extinction corrected total luminosity of 2.8×107\sim2.8 \times 10^{7} L_{\odot}, or 0.09\% of the total-infrared luminosity of NGC\,891. The H2_2 line ratios are nearly constant along the plane of the galaxy -- we do not observe the previously reported strong drop-off in the S(1)/S(0) line intensity ratio in the outer regions of the galaxy, so we find no evidence for the very massive cold CO-free molecular clouds invoked to explain the past observations. The H2_2 level excitation temperatures increase monotonically indicating more than one component to the emitting gas. More than 99\% of the mass is in the lowest excitation (Tex_{ex} \sim125 K) ``warm'' component. In the inner galaxy, the warm H2_2 emitting gas is \sim15\% of the CO(1-0)-traced cool molecular gas, while in the outer regions the fraction is twice as high. This large mass of warm gas is heated by a combination of the far-UV photons from stars in photo-dissociation regions (PDRs) and the dissipation of turbulent kinetic energy. Including the observed far-infrared [OI] and [CII] fine-structure line emission and far-infrared continuum emission in a self-consistent manner to constrain the PDR models, we find essentially all of the S(0) and most (70\%) of the S(1) line arises from low excitation PDRs, while most (80\%) of the S(2) and the remainder of the S(1) line emission arises from low velocity microturbulent dissipation.Comment: Accepted for publication in The Astrophysical Journal. Figure 10 available at http://www.physics.uoc.gr/~vassilis/papers/ngc891.pd

    The Paradox of Power in CSR: A Case Study on Implementation

    No full text
    Purpose Although current literature assumes positive outcomes for stakeholders resulting from an increase in power associated with CSR, this research suggests that this increase can lead to conflict within organizations, resulting in almost complete inactivity on CSR. Methods A single in-depth case study, focusing on power as an embedded concept. Results Empirical evidence is used to demonstrate how some actors use CSR to improve their own positions within an organization. Resource dependence theory is used to highlight why this may be a more significant concern for CSR. Conclusions Increasing power for CSR has the potential to offer actors associated with it increased personal power, and thus can attract opportunistic actors with little interest in realizing the benefits of CSR for the company and its stakeholders. Thus power can be an impediment to furthering CSR strategy and activities at the individual and organizational level

    CP-odd A^0 production at e^+e^- colliders in MSSM with CP violating phases

    Full text link
    We study the production of a heavy CP-odd A0A^0 boson in association with a photon e+eA0γe^+e^-\to A^0\gamma and a Z boson e+eA0Ze^+e^-\to A^0 Z as well as the single production of A0A^0 via e+eνeνˉeA0e^+e^- \to \nu_e\bar{\nu}_e A^0 in the MSSM with CP violating phases. In the case of e+eA0γ/A0Ze^+e^-\to A^0\gamma / A^0 Z, we show that the squark contribution, which vanishes in the MSSM with real parameters, turns out to be sizeable in presence of CP violating phases in the soft SUSY parameters. For e+eνeνˉeA0e^+e^- \to \nu_e \bar{\nu}_e A^0 in both the 2HDM and MSSM with real parameters, the cross section does not reach observable rates at a NLC. It is found that with a large CP violating phase for AtA_t, cross sections of the order 0.1 fb are attainable for all the processes e+eA0γe^+e^-\to A^0\gamma, e+eA0Ze^+e^-\to A^0 Z and e+eνeνˉeA0e^+e^- \to \nu_e \bar{\nu}_e A^0.Comment: 12 pages, latex, 7 eps figures. One new figure, new discussion arroud it. Version to appear in Phys. Rev.

    The Formation and Evolution of the First Massive Black Holes

    Full text link
    The first massive astrophysical black holes likely formed at high redshifts (z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations. These black holes grow by mergers and gas accretion, evolve into the population of bright quasars observed at lower redshifts, and eventually leave the supermassive black hole remnants that are ubiquitous at the centers of galaxies in the nearby universe. The astrophysical processes responsible for the formation of the earliest seed black holes are poorly understood. The purpose of this review is threefold: (1) to describe theoretical expectations for the formation and growth of the earliest black holes within the general paradigm of hierarchical cold dark matter cosmologies, (2) to summarize several relevant recent observations that have implications for the formation of the earliest black holes, and (3) to look into the future and assess the power of forthcoming observations to probe the physics of the first active galactic nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant Universe", Ed. A. J. Barger, Kluwer Academic Publisher
    corecore