2,543 research outputs found
Inelastic neutron scattering study of phonon density of states in nanostructured Si1xGex thermoelectrics
Inelastic neutron scattering measurements are utilized to explore relative
changes in the generalized phonon density of states of nanocrystalline Si1xGex
thermoelectric materials prepared via ball milling and hot-pressing techniques.
Dynamic signatures of Ge clustering can be inferred from the data by
referencing the resulting spectra to a density functional theoretical model
assuming homogeneous alloying via the virtual-crystal approximation.
Comparisons are also presented between as-milled Si nanopowder and bulk,
polycrystalline Si where a preferential low-energy enhancement and lifetime
broadening of the phonon density of states appear in the nanopowder. Negligible
differences are however observed between the phonon spectra of bulk Si and hot
pressed, nanostructured Si samples suggesting that changes to the single phonon
dynamics above 4 meV play only a secondary role in the modified heat conduction
of this compound.Comment: 9 pages,8 figure
Preliminary operational results from the Willard solar power system
The solar powered system located near Willard, New Mexico, generates mechanical or electrical power at a capacity of 19 kW (25 HP). The solar collection system incorporates east/west tracking parabolic trough collectors with a total aperture area of 1275 sq m (13,720 sq ft). The hot oil type thermal energy storage is sufficient for approximately 20 hours of power system operation. The system utilizes a reaction type turbine in conjunction with an organic Rankine cycle engine. Total collector field efficiency reaches a maximum of 20 percent near the winter solstice and about 50 percent during the summer. During the month of July, 1979, the system pumped 60 percent of the 35,300 cu m (28.6 acre-feet) of water delivered. Operating efficiencies for the turbine component, organic Rankine cycle engine and the complete power system are respectively 65 to 75 percent, 12 to 15 percent and 5 to 6 percent. Significant maintenance time was expended on both the collector and power systems throughout the operational period
Phonon quarticity induced by changes in phonon-tracked hybridization during lattice expansion and its stabilization of rutile TiO
Although the rutile structure of TiO is stable at high temperatures, the
conventional quasiharmonic approximation predicts that several acoustic phonons
decrease anomalously to zero frequency with thermal expansion, incorrectly
predicting a structural collapse at temperatures well below 1000\,K. Inelastic
neutron scattering was used to measure the temperature dependence of the phonon
density of states (DOS) of rutile TiO from 300 to 1373\,K. Surprisingly,
these anomalous acoustic phonons were found to increase in frequency with
temperature. First-principles calculations showed that with lattice expansion,
the potentials for the anomalous acoustic phonons transform from quadratic to
quartic, stabilizing the rutile phase at high temperatures. In these modes, the
vibrational displacements of adjacent Ti and O atoms cause variations in
hybridization of electrons of Ti and electrons of O atoms. With
thermal expansion, the energy variation in this "phonon-tracked hybridization"
flattens the bottom of the interatomic potential well between Ti and O atoms,
and induces a quarticity in the phonon potential.Comment: 7 pages, 6 figures, supplemental material (3 figures
Nonharmonic phonons in MgB_2 at elevated temperatures
Inelastic neutron scattering was used to measure phonon spectra in MgB_2 and Mg_(0.75)Al_(0.25)B_2 from 7 to 750 K to investigate anharmonicity and adiabatic electron-phonon coupling. First-principles calculations of phonons with a linear response method were performed at multiple unit cell volumes, and the Helmholtz free energy was minimized to obtain the lattice parameters and phonon dynamics at elevated temperature in the quasiharmonic approximation. Most of the temperature dependence of the phonon density of states could be understood with the quasiharmonic approximation, although there was also significant thermal broadening of the phonon spectra. In comparison to Mg_(0.75)Al_(0.25)B_2, in the energy range of 60 to 80 meV the experimental phonon spectra from MgB_2 showed a nonmonotonic change with temperature around 500 K. This may originate from a change with temperature of the adiabatic electron-phonon coupling
Structural Relationship between Negative Thermal Expansion and Quartic Anharmonicity of Cubic ScF_3
Cubic scandium trifluoride (ScF_3) has a large negative thermal expansion over a wide range of temperatures. Inelastic neutron scattering experiments were performed to study the temperature dependence of the lattice dynamics of ScF3 from 7 to 750 K. The measured phonon densities of states show a large anharmonic contribution with a thermal stiffening of modes around 25 meV. Phonon calculations with first-principles methods identified the individual modes in the densities of states, and frozen phonon calculations showed that some of the modes with motions of F atoms transverse to their bond direction behave as quantum quartic oscillators. The quartic potential originates from harmonic interatomic forces in the DO_9 structure of ScF_3, and accounts for phonon stiffening with the temperature and a significant part of the negative thermal expansion
- …
