968 research outputs found
Moving Detectors in Cavities
We consider two-level detectors, coupled to a quantum scalar field, moving
inside cavities. We highlight some pathological resonant effects due to abrupt
boundaries, and decide to describe the cavity by switching smoothly the
interaction by a time-dependent gate-like function. Considering uniformly
accelerated trajectories, we show that some specific choices of non-adiabatic
switching have led to hazardous interpretations about the enhancement of the
Unruh effect in cavities. More specifically, we show that the
emission/absorption ratio takes arbitrary high values according to the emitted
quanta properties and to the transients undergone at the entrance and the exit
of the cavity, {\it independently of the acceleration}. An explicit example is
provided where we show that inertial and uniformly accelerated world-lines can
even lead to the same ``pseudo-temperature''.Comment: 13 pages, 6 figures, version accepted in Phys.Rev.
On the Third Critical Speed for Rotating Bose-Einstein Condensates
We study a two-dimensional rotating Bose-Einstein condensate confined by an
anharmonic trap in the framework of the Gross-Pitaevksii theory. We consider a
rapid rotation regime close to the transition to a giant vortex state. It was
proven in [M. Correggi {\it et al}, {\it J. Math. Phys. \textbf{53}(2012)] that
such a transition occurs when the angular velocity is of order , with denoting the coefficient of the nonlinear
term in the Gross-Pitaevskii functional and (Thomas-Fermi
regime). In this paper we identify a finite value such
that, if with , the condensate is in the giant vortex phase. Under the
same condition we prove a refined energy asymptotics and an estimate of the
winding number of any Gross-Pitaevskii minimizer.Comment: pdfLaTeX, 39 pages, minor changes, to appear in J. Math. Phy
Multichannel demultiplexer/demodulator technologies for future satellite communication systems
NASA-Lewis' Space Electronics Div. supports ongoing research in advanced satellite communication architectures, onboard processing, and technology development. Recent studies indicate that meshed VSAT (very small aperture terminal) satellite communication networks using FDMA (frequency division multiple access) uplinks and TDMA (time division multiplexed) downlinks are required to meet future communication needs. One of the critical advancements in such a satellite communication network is the multichannel demultiplexer/demodulator (MCDD). The progress is described which was made in MCDD development using either acousto-optical, optical, or digital technologies
Theory of Nonlinear Matter Waves in Optical Lattices
We consider several effects of the matter wave dynamics which can be observed
in Bose-Einstein condensates embedded into optical lattices. For low-density
condensates we derive approximate evolution equations, the form of which
depends on relation among the main spatial scales of the system. Reduction of
the Gross-Pitaevskii equation to a lattice model (the tight-binding
approximation) is also presented. Within the framework of the obtained models
we consider modulational instability of the condensate, solitary and periodic
matter waves, paying special attention to different limits of the solutions,
i.e. to smooth movable gap solitons and to strongly localized discrete modes.
We also discuss how the Feshbach resonance, a linear force, and lattice defects
affect the nonlinear matter waves.Comment: Modern Physics Letters B (invited brief review), 25 pages, 9 figure
Time delay in thin slabs with self-focusing Kerr-type nonlinearity
Time delays for an intense transverse electric
(TE) wave propagating through a Kerr-type nonlinear slab are investigated.
The relation between the bidirectional group delay and the dwell time is
derived and it is shown that the difference between them can be separated
into three terms. The first one is the familiar self interference time, due
to the dispersion of the medium surrounding the slab. The other two terms
are caused by the nonlinearity and oblique incidence of the TE wave. It is
shown that the electric field distribution along the slab may be expressed
in terms of Jacobi elliptic functions while the phase difference introduced by the slab is given in terms of incomplete elliptic integrals. The expressions for the field intensity dependent complex reflection and transmission coefficients are derived and the multivalued oscillatory behavior of the delay times for the case of a thin slab is demonstrated
Electromagnetic Magic: The Relativistically Rotating Disk
A closed form analytic solution is found for the electromagnetic field of the
charged uniformly rotating conducting disk for all values of the tip speed
up to . For it becomes the Magic field of the Kerr-Newman black hole
with set to zero.
The field energy, field angular momentum and gyromagnetic ratio are
calculated and compared with those of the electron.
A new mathematical expression that sums products of 3 Legendre functions each
of a different argument, is demonstrated.Comment: 10 pages, one figur
Nexus between quantum criticality and the chemical potential pinning in high- cuprates
For strongly correlated electrons the relation between total number of charge
carriers and the chemical potential reveals for large Coulomb
energy the apparently paradoxical pinning of within the Mott gap, as
observed in high- cuprates. By unravelling consequences of the non-trivial
topology of the charge gauge U(1) group and the associated ground state
degeneracy we found a close kinship between the pinning of and the
zero-temperature divergence of the charge compressibility , which marks a novel quantum criticality governed by
topological charges rather than Landau principle of the symmetry breaking.Comment: 4+ pages, 2 figures, typos corrected, version as publishe
Double-Slit Interferometry with a Bose-Einstein Condensate
A Bose-Einstein "double-slit" interferometer has been recently realized
experimentally by (Y. Shin et. al., Phys. Rev. Lett. 92 50405 (2004)). We
analyze the interferometric steps by solving numerically the time-dependent
Gross-Pitaevski equation in three-dimensional space. We focus on the
adiabaticity time scales of the problem and on the creation of spurious
collective excitations as a possible source of the strong dephasing observed
experimentally. The role of quantum fluctuations is discussed.Comment: 4 pages, 3 figure
Solving the radial Dirac equations: a numerical odyssey
We discuss, in a pedagogical way, how to solve for relativistic wave
functions from the radial Dirac equations. After an brief introduction, in
Section II we solve the equations for a linear Lorentz scalar potential,
V_s(r), that provides for confinement of a quark. The case of massless u and d
quarks is treated first, as these are necessarily quite relativistic. We use an
iterative procedure to find the eigenenergies and the upper and lower component
wave functions for the ground state and then, later, some excited states.
Solutions for the massive quarks (s, c, and b) are also presented. In Section
III we solve for the case of a Coulomb potential, which is a time-like
component of a Lorentz vector potential, V_v(r). We re-derive, numerically, the
(analytically well-known) relativistic hydrogen atom eigenenergies and wave
functions, and later extend that to the cases of heavier one-electron atoms and
muonic atoms. Finally, Section IV finds solutions for a combination of the V_s
and V_v potentials. We treat two cases. The first is one in which V_s is the
linear potential used in Sec. II and V_v is Coulombic, as in Sec. III. The
other is when both V_s and V_v are linearly confining, and we establish when
these potentials give a vanishing spin-orbit interaction (as has been shown to
be the case in quark models of the hadronic spectrum).Comment: 39 pages (total), 23 figures, 2 table
A magnetic analog of the isotope effect in cuprates
We present extensive magnetic measurements of the
(Ca_xLa_{1-x})(Ba_{1.75-x}La_{0.25+x})Cu_{3}O_{y} (CLBLCO) system with its four
different families (x) having a Tc^max(x) variation of 28% and minimal
structural changes. For each family we measured the Neel temperature, the
anisotropies of the magnetic interactions, and the spin glass temperature. Our
results exhibit a universal relation Tc=c*J*n_s for all families, where c~1, J
is the in plane Heisenberg exchange, and n_s is the carrier density. This
relates cuprate superconductivity to magnetism in the same sense that phonon
mediated superconductivity is related to atomic mass.Comment: With an additional inset in Fig.
- …
