5,883 research outputs found

    HST Imaging of Decoupled Dust Clouds in the Ram Pressure Stripped Virgo Spirals NGC 4402 and NGC 4522

    Full text link
    We present the highest-resolution study to date of the ISM in galaxies undergoing ram pressure stripping, using HST BVI imaging of NGC 4522 and NGC 4402, Virgo Cluster spirals that are well-known to be experiencing ICM ram pressure. We find that throughout most of both galaxies, the main dust lane has a fairly well-defined edge, with a population of GMC-sized (tens- to hundreds-of-pc scale), isolated, highly extincting dust clouds located up to ~1.5 kpc radially beyond it. Outside of these dense clouds, the area has little or no diffuse dust extinction, indicating that the clouds have decoupled from the lower-density ISM material that has already been stripped. Several of the dust clouds have elongated morphologies that indicate active ram pressure, including two large (kpc-scale) filaments in NGC 4402 that are elongated in the projected ICM wind direction. We calculate a lower limit on the HI + H_2 masses of these clouds based on their dust extinctions and find that a correction factor of ~10 gives cloud masses consistent with those measured in CO for clouds of similar diameters, probably due to the complicating factors of foreground light, cloud substructure, and resolution limitations. Assuming that the clouds' actual masses are consistent with those of GMCs of similar diameters (~10^4-10^5 M_sun), we estimate that only a small fraction (~1-10%) of the original HI + H_2 remains in the parts of the disks with decoupled clouds. Based on H-alpha images, a similar fraction of star formation persists in these regions, 2-3% of the estimated pre-stripping star formation rate. We find that the decoupled cloud lifetimes may be up to 150-200 Myr.Comment: 20 pages, 22 figure

    A random walk model to study the cycles emerging from the exploration-exploitation trade-off

    Get PDF
    We present a model for a random walk with memory, phenomenologically inspired in a biological system. The walker has the capacity to remember the time of the last visit to each site and the step taken from there. This memory affects the behavior of the walker each time it reaches an already visited site modulating the probability of repeating previous moves. This probability increases with the time elapsed from the last visit. A biological analog of the walker is a frugivore, with the lattice sites representing plants. The memory effect can be associated with the time needed by plants to recover its fruit load. We propose two different strategies, conservative and explorative, as well as intermediate cases, leading to non intuitive interesting results, such as the emergence of cycles.Comment: To appear in Phys. Rev.

    Trapping with biased diffusion species

    Full text link
    We analyze a trapping reaction with a single penetrable trap, in a one dimensional lattice, where both species (particles and trap) are mobile and have a drift velocity. We obtain the density as seen from a reference system attached to the trap and from the laboratory frame. In addition we study the nearest neighbor distance to the trap. We exploit a stochastic model previously developed, and compare the results with numerical simulations, resulting in an excellent agreement.Comment: 6 pages, 7 Postscript figure

    Some Notes on Liquid Sloshing in Compartmented Cylindrical Tanks Technical Report No. 1

    Get PDF
    Frequencies and total force response in rigid cylindrical tanks comparted into sectors by vertical walls and excited in translation to study liquid sloshin

    Longitudinal vibration of ring stiffened cylindrical shells containing liquids Technical report no. 7

    Get PDF
    Longitudinal vibration of ring stiffened cylindrical shells containing liquids for application to liquid fueled space vehicle booster

    A simplex-like search method for bi-objective optimization

    Get PDF
    We describe a new algorithm for bi-objective optimization, similar to the Nelder Mead simplex algorithm, widely used for single objective optimization. For diferentiable bi-objective functions on a continuous search space, internal Pareto optima occur where the two gradient vectors point in opposite directions. So such optima may be located by minimizing the cosine of the angle between these vectors. This requires a complex rather than a simplex, so we term the technique the \cosine seeking complex". An extra beneft of this approach is that a successful search identifes the direction of the effcient curve of Pareto points, expediting further searches. Results are presented for some standard test functions. The method presented is quite complicated and space considerations here preclude complete details. We hope to publish a fuller description in another place
    corecore