338 research outputs found

    The decimation process in random k-SAT

    Full text link
    Let F be a uniformly distributed random k-SAT formula with n variables and m clauses. Non-rigorous statistical mechanics ideas have inspired a message passing algorithm called Belief Propagation Guided Decimation for finding satisfying assignments of F. This algorithm can be viewed as an attempt at implementing a certain thought experiment that we call the Decimation Process. In this paper we identify a variety of phase transitions in the decimation process and link these phase transitions to the performance of the algorithm

    Approaching the ground states of the random maximum two-satisfiability problem by a greedy single-spin flipping process

    Full text link
    In this brief report we explore the energy landscapes of two spin glass models using a greedy single-spin flipping process, {\tt Gmax}. The ground-state energy density of the random maximum two-satisfiability problem is efficiently approached by {\tt Gmax}. The achieved energy density e(t)e(t) decreases with the evolution time tt as e(t)e()=h(log10t)ze(t)-e(\infty)=h (\log_{10} t)^{-z} with a small prefactor hh and a scaling coefficient z>1z > 1, indicating an energy landscape with deep and rugged funnel-shape regions. For the ±J\pm J Viana-Bray spin glass model, however, the greedy single-spin dynamics quickly gets trapped to a local minimal region of the energy landscape.Comment: 5 pages with 4 figures included. Accepted for publication in Physical Review E as a brief repor

    Spatial Mixing of Coloring Random Graphs

    Full text link
    We study the strong spatial mixing (decay of correlation) property of proper qq-colorings of random graph G(n,d/n)G(n, d/n) with a fixed dd. The strong spatial mixing of coloring and related models have been extensively studied on graphs with bounded maximum degree. However, for typical classes of graphs with bounded average degree, such as G(n,d/n)G(n, d/n), an easy counterexample shows that colorings do not exhibit strong spatial mixing with high probability. Nevertheless, we show that for qαd+βq\ge\alpha d+\beta with α>2\alpha>2 and sufficiently large β=O(1)\beta=O(1), with high probability proper qq-colorings of random graph G(n,d/n)G(n, d/n) exhibit strong spatial mixing with respect to an arbitrarily fixed vertex. This is the first strong spatial mixing result for colorings of graphs with unbounded maximum degree. Our analysis of strong spatial mixing establishes a block-wise correlation decay instead of the standard point-wise decay, which may be of interest by itself, especially for graphs with unbounded degree

    Harnessing the Bethe Free Energy

    Get PDF
    Gibbs measures induced by random factor graphs play a prominent role in computer science, combinatorics and physics. A key problem is to calculate the typical value of the partition function. According to the "replica symmetric cavity method", a heuristic that rests on non-rigorous considerations from statistical mechanics, in many cases this problem can be tackled by way of maximising a functional called the "Bethe free energy". In this paper we prove that the Bethe free energy upper-bounds the partition function in a broad class of models. Additionally, we provide a sufficient condition for this upper bound to be tight

    Random forests with random projections of the output space for high dimensional multi-label classification

    Full text link
    We adapt the idea of random projections applied to the output space, so as to enhance tree-based ensemble methods in the context of multi-label classification. We show how learning time complexity can be reduced without affecting computational complexity and accuracy of predictions. We also show that random output space projections may be used in order to reach different bias-variance tradeoffs, over a broad panel of benchmark problems, and that this may lead to improved accuracy while reducing significantly the computational burden of the learning stage

    Clustering of solutions in the random satisfiability problem

    Full text link
    Using elementary rigorous methods we prove the existence of a clustered phase in the random KK-SAT problem, for K8K\geq 8. In this phase the solutions are grouped into clusters which are far away from each other. The results are in agreement with previous predictions of the cavity method and give a rigorous confirmation to one of its main building blocks. It can be generalized to other systems of both physical and computational interest.Comment: 4 pages, 1 figur

    Random Projections For Large-Scale Regression

    Full text link
    Fitting linear regression models can be computationally very expensive in large-scale data analysis tasks if the sample size and the number of variables are very large. Random projections are extensively used as a dimension reduction tool in machine learning and statistics. We discuss the applications of random projections in linear regression problems, developed to decrease computational costs, and give an overview of the theoretical guarantees of the generalization error. It can be shown that the combination of random projections with least squares regression leads to similar recovery as ridge regression and principal component regression. We also discuss possible improvements when averaging over multiple random projections, an approach that lends itself easily to parallel implementation.Comment: 13 pages, 3 Figure

    Exhaustive enumeration unveils clustering and freezing in random 3-SAT

    Full text link
    We study geometrical properties of the complete set of solutions of the random 3-satisfiability problem. We show that even for moderate system sizes the number of clusters corresponds surprisingly well with the theoretic asymptotic prediction. We locate the freezing transition in the space of solutions which has been conjectured to be relevant in explaining the onset of computational hardness in random constraint satisfaction problems.Comment: 4 pages, 3 figure

    The dynamics of proving uncolourability of large random graphs I. Symmetric Colouring Heuristic

    Full text link
    We study the dynamics of a backtracking procedure capable of proving uncolourability of graphs, and calculate its average running time T for sparse random graphs, as a function of the average degree c and the number of vertices N. The analysis is carried out by mapping the history of the search process onto an out-of-equilibrium (multi-dimensional) surface growth problem. The growth exponent of the average running time is quantitatively predicted, in agreement with simulations.Comment: 5 figure
    corecore