3,277 research outputs found
Singularity in the boundary resistance between superfluid He and a solid surface
We report new measurements in four cells of the thermal boundary resistance
between copper and He below but near the superfluid-transition
temperature . For fits of to the data yielded ,
whereas a fit to theoretical values based on the renormalization-group theory
yielded . Alternatively, a good fit of the theory to the data could
be obtained if the {\it amplitude} of the prediction was reduced by a factor
close to two. The results raise the question whether the boundary conditions
used in the theory should be modified.Comment: 4 pages, 4 figures, revte
Heat transport by turbulent Rayleigh-B\'enard convection for $\Pra\ \simeq 0.83\times 10^{12} \alt \Ra\ \alt 10^{15}\Gamma = 0.50$
We report experimental results for heat-transport measurements, in the form
of the Nusselt number \Nu, by turbulent Rayleigh-B\'enard convection in a
cylindrical sample of aspect ratio ( m is
the diameter and m the height). The measurements were made using
sulfur hexafluoride at pressures up to 19 bars as the fluid. They are for the
Rayleigh-number range 3\times 10^{12} \alt \Ra \alt 10^{15} and for Prandtl
numbers \Pra\ between 0.79 and 0.86. For \Ra < \Ra^*_1 \simeq 1.4\times
10^{13} we find \Nu = N_0 \Ra^{\gamma_{eff}} with , consistent with classical turbulent Rayleigh-B\'enard convection in a
system with laminar boundary layers below the top and above the bottom plate.
For \Ra^*_1 < \Ra < \Ra^*_2 (with \Ra^*_2 \simeq 5\times 10^{14})
gradually increases up to . We argue that above
\Ra^*_2 the system is in the ultimate state of convection where the boundary
layers, both thermal and kinetic, are also turbulent. Several previous
measurements for are re-examined and compared with the present
results.Comment: 44 pages, 18 figures, submitted to NJ
Effect of the Centrifugal Force on Domain Chaos in Rayleigh-B\'enard convection
Experiments and simulations from a variety of sample sizes indicated that the
centrifugal force significantly affects rotating Rayleigh-B\'enard
convection-patterns. In a large-aspect-ratio sample, we observed a hybrid state
consisting of domain chaos close to the sample center, surrounded by an annulus
of nearly-stationary nearly-radial rolls populated by occasional defects
reminiscent of undulation chaos. Although the Coriolis force is responsible for
domain chaos, by comparing experiment and simulation we show that the
centrifugal force is responsible for the radial rolls. Furthermore, simulations
of the Boussinesq equations for smaller aspect ratios neglecting the
centrifugal force yielded a domain precession-frequency
with as predicted by the amplitude-equation model for domain
chaos, but contradicted by previous experiment. Additionally the simulations
gave a domain size that was larger than in the experiment. When the centrifugal
force was included in the simulation, and the domain size closely agreed
with experiment.Comment: 8 pages, 11 figure
Enhanced heat transport by turbulent two-phase Rayleigh-B\'enard convection
We report measurements of turbulent heat-transport in samples of ethane
(CH) heated from below while the applied temperature difference straddled the liquid-vapor co-existance curve . When the sample
top temperature decreased below , droplet condensation occurred
and the latent heat of vaporization provided an additional heat-transport
mechanism.The effective conductivity increased linearly with
decreasing , and reached a maximum value that was an
order of magnitude larger than the single-phase . As
approached the critical pressure, increased dramatically even
though vanished. We attribute this phenomenon to an enhanced
droplet-nucleation rate as the critical point is approached.Comment: 4 gages, 6 figure
Clustering in a precipitate free GeMn magnetic semiconductor
We present the first study relating structural parameters of precipitate free
Ge0.95Mn0.05 films to magnetisation data. Nanometer sized clusters - areas with
increased Mn content on substitutional lattice sites compared to the host
matrix - are detected in transmission electron microscopy (TEM) analysis. The
films show no overall spontaneous magnetisation at all down to 2K. The TEM and
magnetisation results are interpreted in terms of an assembly of
superparamagnetic moments developing in the dense distribution of clusters.
Each cluster individually turns ferromagnetic below an ordering temperature
which depends on its volume and Mn content.Comment: accepted for publication in Phys. Rev. Lett. (2006). High resolution
images ibide
Interplay between the electrical transport properties of GeMn thin films and Ge substrates
We present evidence that electrical transport studies of epitaxial p-type
GeMn thin films fabricated on high resistivity Ge substrates are severely
influenced by parallel conduction through the substrate, related to the large
intrinsic conductivity of Ge due to its small bandgap. Anomalous Hall
measurements and large magneto resistance effects are completely understood by
taking a dominating substrate contribution as well as the measurement geometry
into account. It is shown that substrate conduction persists also for well
conducting, degenerate, p-type thin films, giving rise to an effective
two-layer conduction scheme. Using n-type Ge substrates, parallel conduction
through the substrate can be reduced for the p-type epi-layers, as a
consequence of the emerging pn-interface junction. GeMn thin films fabricated
on these substrates exhibit a negligible magneto resistance effect. Our study
underlines the importance of a thorough characterization and understanding of
possible substrate contributions for electrical transport studies of GeMn thin
films.Comment: 9 pages, 9 figure
Isentropic Curves at Magnetic Phase Transitions
Experiments on cold atom systems in which a lattice potential is ramped up on
a confined cloud have raised intriguing questions about how the temperature
varies along isentropic curves, and how these curves intersect features in the
phase diagram. In this paper, we study the isentropic curves of two models of
magnetic phase transitions- the classical Blume-Capel Model (BCM) and the Fermi
Hubbard Model (FHM). Both Mean Field Theory (MFT) and Monte Carlo (MC) methods
are used. The isentropic curves of the BCM generally run parallel to the phase
boundary in the Ising regime of low vacancy density, but intersect the phase
boundary when the magnetic transition is mainly driven by a proliferation of
vacancies. Adiabatic heating occurs in moving away from the phase boundary. The
isentropes of the half-filled FHM have a relatively simple structure, running
parallel to the temperature axis in the paramagnetic phase, and then curving
upwards as the antiferromagnetic transition occurs. However, in the doped case,
where two magnetic phase boundaries are crossed, the isentrope topology is
considerably more complex
Rayleigh-B\'{e}nard convection in a homeotropically aligned nematic liquid crystal
We report experimental results for convection near onset in a thin layer of a
homeotropically aligned nematic liquid crystal heated from below as a function
of the temperature difference and the applied vertical magnetic
field and compare them with theoretical calculations. The experiments cover
the field range 8 \alt h \equiv H/ H_{F} \alt 80 ( is the
Fr\'eedericksz field). For less than a codimension-two field the bifurcation is subcritical and oscillatory, with travelling- and
standing-wave transients. Beyond the bifurcation is stationary and
subcritical until a tricritical field is reached, beyond which it
is supercritical. The bifurcation sequence as a function of found in the
experiment confirms the qualitative aspects of the theoretical predictions.
However, the value of is about 10% higher than the predicted value and
the results for are systematically below the theory by about 2% at small
and by as much as 7% near . At , is continuous within
the experimental resolution whereas the theory indicates a 7% discontinuity.
The theoretical tricritical field is somewhat below the
experimental one. The fully developed flow above for is
chaotic. For the subcritical stationary bifurcation also
leads to a chaotic state. The chaotic states persist upon reducing the Rayleigh
number below , i.e. the bifurcation is hysteretic. Above the tricritical
field , we find a bifurcation to a time independent pattern which within
our resolution is non-hysteretic.Comment: 15 pages incl. 23 eps figure
Spiral Defect Chaos in Large Aspect Ratio Rayleigh-Benard Convection
We report experiments on convection patterns in a cylindrical cell with a
large aspect ratio. The fluid had a Prandtl number of approximately 1. We
observed a chaotic pattern consisting of many rotating spirals and other
defects in the parameter range where theory predicts that steady straight rolls
should be stable. The correlation length of the pattern decreased rapidly with
increasing control parameter so that the size of a correlated area became much
smaller than the area of the cell. This suggests that the chaotic behavior is
intrinsic to large aspect ratio geometries.Comment: Preprint of experimental paper submitted to Phys. Rev. Lett. May 12
1993. Text is preceeded by many TeX macros. Figures 1 and 2 are rather lon
Framing hydropower as green energy: Assessing drivers, risks and tensions in the Eastern Himalayas
The culturally and ecologically diverse region of the Eastern Himalayas is the target of ambitious hydropower development plans. Policy discourses at national and international levels position this development as synergistically positive: it combines the production of clean energy to fuel economic growth at regional and national levels with initiatives to lift poor mountain communities out of poverty. Different from hydropower development in the 20th century in which development agencies and banks were important players, contemporary initiatives importantly rely on the involvement of private actors, with a prominent role of the private finance sector. This implies that hydropower development is not only financially viable but also understood as highly profitable. This paper examines the new development of hydropower in the Eastern Himalayas of Nepal and India. It questions its framing as green energy, interrogates its links with climate change, and examines its potential for investment and capital accumulation. To do this, we also review the evidence on the extent to which its construction and operation may modify existing hydrogeological processes and ecosystems, as well as its impacts on the livelihoods of diverse groups of people that depend on these. The paper concludes that hydropower development in the region is characterized by inherent contentions and uncertainties, refuting the idea that dams constitute development projects whose impacts can be simply predicted, controlled and mitigated. Indeed, in a highly complex geological, ecological, cultural and political context that is widely regarded to be especially vulnerable to the effects of climate change, hydropower as a development strategy makes for a toxic cocktail
- …
