6,276 research outputs found

    Algebraic synthesis of time-optimal unitaries in SU(2) with alternating controls

    Get PDF
    We present an algebraic framework to study the time-optimal synthesis of arbitrary unitaries in SU(2), when the control set is restricted to rotations around two non-parallel axes in the Bloch sphere. Our method bypasses commonly used control-theoretical techniques, and easily imposes necessary conditions on time-optimal sequences. In a straightforward fashion, we prove that time-optimal sequences are solely parametrized by three rotation angles and derive general bounds on those angles as a function of the relative rotation speed of each control and the angle between the axes. Results are substantially different whether both clockwise and counterclockwise rotations about the given axes are allowed, or only clockwise rotations. In the first case, we prove that any finite time-optimal sequence is composed at most of five control concatenations, while for the more restrictive case, we present scaling laws on the maximum length of any finite time-optimal sequence. The bounds we find for both cases are stricter than previously published ones and severely constrain the structure of time-optimal sequences, allowing for an efficient numerical search of the time-optimal solution. Our results can be used to find the time-optimal evolution of qubit systems under the action of the considered control set, and thus potentially increase the number of realizable unitaries before decoherence

    Parametric studies of advanced turboprops

    Get PDF
    The effects of geometric variables (sweep and twist) on the structural performance of advanced turboprops are investigated. The investigation is limited to aerodynamically efficient turboprops using an acceptable design configuration as a baseline. The baseline configuration is modified using a seven by seven array of independently varying sweep and twist parameters while maintaining acceptable aerodynamic efficiency. The turboprop structural performance is evaluated in terms of critical speeds, tip displacements, and vibration frequencies where geometric nonlinearities are included. The results obtained are presented in such a manner as to highlight the effects of sweep and twist on the structural performance of aerodynamically efficient turboprop configurations

    Maximally Entangled Mixed-State Generation via Local Operations

    Get PDF
    We present a general theoretical method to generate maximally entangled mixed states of a pair of photons initially prepared in the singlet polarization state. This method requires only local operations upon a single photon of the pair and exploits spatial degrees of freedom to induce decoherence. We report also experimental confirmation of these theoretical results.Comment: 5 pages, 2 figures, to be published in Physical Review

    Entangled mixed-state generation by twin-photon scattering

    Get PDF
    We report novel experimental results on mixed-state generation by multi-mode scattering of polarization-entangled photons. By using a large variety of scattering media we obtain two markedly different classes of scattered states; namely Werner-like and sub-Werner-like states. Our experimental findings are in excellent agreement with a phenomenological model based upon the description of a scattering process as a quantum map

    Service Orientation and the Smart Grid state and trends

    Get PDF
    The energy market is undergoing major changes, the most notable of which is the transition from a hierarchical closed system toward a more open one highly based on a “smart” information-rich infrastructure. This transition calls for new information and communication technologies infrastructures and standards to support it. In this paper, we review the current state of affairs and the actual technologies with respect to such transition. Additionally, we highlight the contact points between the needs of the future grid and the advantages brought by service-oriented architectures.

    Sampling properties of random graphs: the degree distribution

    Full text link
    We discuss two sampling schemes for selecting random subnets from a network: Random sampling and connectivity dependent sampling, and investigate how the degree distribution of a node in the network is affected by the two types of sampling. Here we derive a necessary and sufficient condition that guarantees that the degree distribution of the subnet and the true network belong to the same family of probability distributions. For completely random sampling of nodes we find that this condition is fulfilled by classical random graphs; for the vast majority of networks this condition will, however, not be met. We furthermore discuss the case where the probability of sampling a node depends on the degree of a node and we find that even classical random graphs are no longer closed under this sampling regime. We conclude by relating the results to real {\it E.coli} protein interaction network data.Comment: accepted for publication in Phys.Rev.

    Physical Bounds to the Entropy-Depolarization Relation in Random Light Scattering

    Get PDF
    We present a theoretical study of multi-mode scattering of light by optically random media, using the Mueller-Stokes formalism which permits to encode all the polarization properties of the scattering medium in a real 4×44 \times 4 matrix. From this matrix two relevant parameters can be extracted: the depolarizing power DMD_M and the polarization entropy EME_M of the scattering medium. By studying the relation between EME_M and DMD_M, we find that {\em all} scattering media must satisfy some {\em universal} constraints. These constraints apply to both classical and quantum scattering processes. The results obtained here may be especially relevant for quantum communication applications, where depolarization is synonymous with decoherence.Comment: 4 pages, 2 figure
    corecore