67 research outputs found
Old World cutaneous leishmaniasis treatment response varies depending on parasite species, geographical location and development of secondary infection
Background: In the Kingdom of Saudi Arabia (KSA), Leishmania major and L. tropica are the main causative agents of Old World cutaneous leishmaniasis (CL). The national CL treatment regimen consists of topical 1% clotrimazole/2% fusidic acid cream followed by 1–2 courses of intralesional sodium stibogluconate (SSG); however, treatment efficacy is highly variable and the reasons for this are not well understood. In this study, we present a complete epidemiological map of CL and determined the efficacy of the standard CL treatment regime in several endemic regions of KSA.Results: Overall, three quarters of patients in all CL-endemic areas studied responded satisfactorily to the current treatment regime, with the remaining requiring only an extra course of SSG. The majority of unresponsive cases were infected with L. tropica. Furthermore, the development of secondary infections (SI) around or within the CL lesion significantly favoured the treatment response of L. major patients but had no effect on L. tropica cases.Conclusions: The response of CL patients to a national treatment protocol appears to depend on several factors, including Leishmania parasite species, geographical location and occurrences of SI. Our findings suggest there is a need to implement alternative CL treatment protocols based on these parameters
Access and utilisation of primary health care services comparing urban and rural areas of Riyadh Providence, Kingdom of Saudi Arabia
The Kingdom of Saudi Arabia (KSA) has seen an increase in chronic diseases. International evidence suggests that early intervention is the best approach to reduce the burden of chronic disease. However, the limited research available suggests that health care access remains unequal, with rural populations having the poorest access to and utilisation of primary health care centres and, consequently, the poorest health outcomes. This study aimed to examine the factors influencing the access to and utilisation of primary health care centres in urban and rural areas of Riyadh province of the KSA
Genetic and phenotypic characterization of NKX6‐2‐related spastic ataxia and hypomyelination
Background and purpose
Hypomyelinating leukodystrophies are a heterogeneous group of genetic disorders with a wide spectrum of phenotypes and a high rate of genetically unsolved cases. Bi‐allelic mutations in NKX6‐2 were recently linked to spastic ataxia 8 with hypomyelinating leukodystrophy.
Methods
Using a combination of homozygosity mapping, exome sequencing, and detailed clinical and neuroimaging assessment a series of new NKX6‐2 mutations in a multicentre setting is described. Then, all reported NKX6‐2 mutations and those identified in this study were combined and an in‐depth analysis of NKX6‐2‐related disease spectrum was provided.
Results
Eleven new cases from eight families of different ethnic backgrounds carrying compound heterozygous and homozygous pathogenic variants in NKX6‐2 were identified, evidencing a high NKX6‐2 mutation burden in the hypomyelinating leukodystrophy disease spectrum. Our data reveal a phenotype spectrum with neonatal onset, global psychomotor delay and worse prognosis at the severe end and a childhood onset with mainly motor phenotype at the milder end. The phenotypic and neuroimaging expression in NKX6‐2 is described and it is shown that phenotypes with epilepsy in the absence of overt hypomyelination and diffuse hypomyelination without seizures can occur.
Conclusions
NKX6‐2 mutations should be considered in patients with autosomal recessive, very early onset of nystagmus, cerebellar ataxia with hypotonia that rapidly progresses to spasticity, particularly when associated with neuroimaging signs of hypomyelination. Therefore, it is recommended that NXK6‐2 should be included in hypomyelinating leukodystrophy and spastic ataxia diagnostic panels
Benchmarking techno-economic performance of greenhouses with different technology levels in a hot humid climate
Greenhouse agriculture is expected to play a critical role in sustainable crop production in the coming decades, opening new markets in climate zones that have been traditionally unproductive for agriculture. Extreme hot and humid conditions, prevalent in rapidly growing economies including the Arabian Peninsula, present unique design and operational challenges to effective greenhouse climate control. These challenges are often poorly understood by local operators and inadequately researched in the literature. This study addresses this knowledge gap by presenting, for the first time, a comprehensive set of benchmarks for water and energy usage, CO2 emissions (CO2e) contribution, and economic performance for low-, mid-, and high-tech greenhouse designs in such climates. Utilising a practical and adaptable model-based framework, the analysis reveals the high-tech design generated the best results for economic return, achieving a 4.9-year payback period with superior water efficiency compared to 5.8 years for low-tech and 7.0 years for mid-tech; however, the high-tech design used significantly more energy to operate its mechanical cooling system, corresponding with higher CO2e per unit area (8.3 and 4.0 times higher than the low- and mid-tech, respectively). These benchmarks provide new insights for greenhouse operators, researchers, and other stakeholders, facilitating the development of effective greenhouse design and operational strategies tailored to meet the challenges of hot and humid climates
Benchmarking techno-economic performance of greenhouses with different technology levels in a hot humid climate
Greenhouse agriculture is expected to play a critical role in sustainable crop production in the coming decades, opening new markets in climate zones that have been traditionally unproductive for agriculture. Extreme hot and humid conditions, prevalent in rapidly growing economies including the Arabian Peninsula, present unique design and operational challenges to effective greenhouse climate control. These challenges are often poorly understood by local operators and inadequately researched in the literature. This study addresses this knowledge gap by presenting, for the first time, a comprehensive set of benchmarks for water and energy usage, CO2 emissions (CO2e) contribution, and economic performance for low-, mid-, and high-tech greenhouse designs in such climates. Utilising a practical and adaptable model-based framework, the analysis reveals the high-tech design generated the best results for economic return, achieving a 4.9-year payback period with superior water efficiency compared to 5.8 years for low-tech and 7.0 years for mid-tech; however, the high-tech design used significantly more energy to operate its mechanical cooling system, corresponding with higher CO2e per unit area (8.3 and 4.0 times higher than the low- and mid-tech, respectively). These benchmarks provide new insights for greenhouse operators, researchers, and other stakeholders, facilitating the development of effective greenhouse design and operational strategies tailored to meet the challenges of hot and humid climates
A Clinical Tool to Identify Candidates for Stress-First Myocardial Perfusion Imaging
Objectives: This study sought to develop a clinical model that identifies a lower-risk population for coronary artery disease that could benefit from stress-first myocardial perfusion imaging (MPI) protocols and that can be used at point of care to risk stratify patients. Background: There is an increasing interest in stress-first and stress-only imaging to reduce patient radiation exposure and improve patient workflow and experience. Methods: A secondary analysis was conducted on a single-center cohort of patients undergoing single-photon emission computed tomography (SPECT) and positron emission tomography (PET) studies. Normal MPI was defined by the absence of perfusion abnormalities and other ischemic markers and the presence of normal left ventricular wall motion and left ventricular ejection fraction. A model was derived using a cohort of 18,389 consecutive patients who underwent SPECT and was validated in a separate cohort of patients who underwent SPECT (n = 5,819), 1 internal cohort of patients who underwent PET (n=4,631), and 1 external PET cohort (n = 7,028). Results: Final models were made for men and women and consisted of 9 variables including age, smoking, hypertension, diabetes, dyslipidemia, typical angina, prior percutaneous coronary intervention, prior coronary artery bypass graft, and prior myocardial infarction. Patients with a score ≤1 were stratified as low risk. The model was robust with areas under the curve of 0.684 (95% confidence interval [CI]: 0.674 to 0.694) and 0.681 (95% CI: 0.666 to 0.696) in the derivation cohort, 0.745 (95% CI: 0.728 to 0.762) and 0.701 (95% CI: 0.673 to 0.728) in the SPECT validation cohort, 0.672 (95% CI: 0.649 to 0.696) and 0.686 (95% CI: 0.663 to 0.710) in the internal PET validation cohort, and 0.756 (95% CI: 0.740 to 0.772) and 0.737 (95% CI: 0.716 to 0.757) in the external PET validation cohort in men and women, respectively. Men and women who scored ≤1 had negative likelihood ratios of 0.48 and 0.52, respectively. Conclusions: A novel model, based on easily obtained clinical variables, is proposed to identify patients with low probability of having abnormal MPI results. This point-of-care tool may be used to identify a population that might qualify for stress-first MPI protocols
Strengthening mechanisms in thermomechanically processed NbTi-microalloyed steel
The effect of deformation temperature on microstructure and mechanical properties was investigated for thermomechanically processed NbTi-microalloyed steel with ferrite-pearlite microstructure. With a decrease in the finish deformation temperature at 1348 K to 1098 K (1075 °C to 825 °C) temperature range, the ambient temperature yield stress did not vary significantly, work hardening rate decreased, ultimate tensile strength decreased, and elongation to failure increased. These variations in mechanical properties were correlated to the variations in microstructural parameters (such as ferrite grain size, solid solution concentrations, precipitate number density and dislocation density). Calculations based on the measured microstructural parameters suggested the grain refinement, solid solution strengthening, precipitation strengthening, and work hardening contributed up to 32 pct, up to 48 pct, up to 25 pct, and less than 3 pct to the yield stress, respectively. With a decrease in the finish deformation temperature, both the grain size strengthening and solid solution strengthening increased, the precipitation strengthening decreased, and the work hardening contribution did not vary significantly
World Health Organization Estimates of the Global and Regional Disease Burden of 11 Foodborne Parasitic Diseases, 2010: A Data Synthesis
We would like to acknowledge the assistance of the WHO Secretariat over the life of the FERG initiative, particularly Amy Cawthorne, Tim Corrigan, Tanja Kuchenmüller, Yuki Minato, Kurt Straif and Claudia Stein. We acknowledge the Institute for Health Metrics and Evaluation (Seattle, WA, USA) for providing data on the global burden of selected diseases.In this data synthesis, Paul Robert Torgerson and colleagues estimate the global and regional disease burden of 11 foodborne parasitic diseases.Yeshttp://www.plosmedicine.org/static/editorial#pee
101 Candida Lusitaniae blood stream infection in King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
- …
