209 research outputs found

    Jointly Optimal Spatial Channel Assignment and Power Allocation for MIMO SWIPT Systems

    Full text link
    The joint design of spatial channel assignment and power allocation in multiple input multiple output (MIMO) systems capable of simultaneous wireless information and power transfer is studied. Assuming availability of channel state information at both communications ends, we maximize the harvested energy at the multi-antenna receiver, while satisfying a minimum information rate requirement for the MIMO link. We first derive the globally optimal eigenchannel assignment and power allocation design, and then present a practically motivated tight closed-form approximation for the optimal design parameters. Selected numerical results verify the validity of the optimal solution and provide useful insights on the proposed designs as well as the Pareto-optimal rate-energy tradeoff

    Transmit Precoding and Receive Power Splitting for Harvested Power Maximization in MIMO SWIPT Systems

    Full text link
    We consider the problem of maximizing the harvested power in Multiple Input Multiple Output (MIMO) Simultaneous Wireless Information and Power Transfer systems with power splitting reception. Different from recently proposed designs, with our optimization problem formulation we target for the jointly optimal transmit precoding and receive uniform power splitting ratio maximizing the harvested power, while ensuring that the quality-of-service requirement of the MIMO link is satisfied. We assume practical radio-frequency Energy Harvesting (EH) receive operation that results in a non-convex optimization problem for the design parameters, which we first formulate in an equivalent generalized convex problem that we then solve optimally. We also derive the globally optimal transmit precoding design for ideal reception. Furthermore, we present analytical bounds for the key variables of both considered problems along with tight high signal-to-noise ratio approximations for their optimal solutions. Two algorithms for the efficient computation of the globally optimal designs are outlined. The first requires solving a small number of non-linear equations, while the second is based on a two-dimensional (2-D) search having linear complexity. Computer simulation results are presented validating the proposed analysis, providing key insights on various system parameters, and investigating the achievable EH gains over benchmark schemes

    Energy-Aware mode selection for throughput maximization in RF-Powered D2D Communications

    Full text link
    Doubly-near-far problem in RF-powered networks can be mitigated by choosing appropriate device-To-device (D2D) communication mode and implementing energy-efficient information transfer (IT). In this work, we present a novel RF energy harvesting architecture where each transmitting-receiving user pair is allocated a disjoint channel for its communication which is fully powered by downlink energy transfer (ET) from hybrid access point (HAP). Considering that each user pair can select either D2D or cellular mode of communication, we propose an optimized transmission protocol controlled by the HAP that involves harvested energy-Aware jointly optimal mode selection (MS) and time allocation (TA) for ET and IT to maximize the sum-Throughput. Jointly global optimal solutions are derived by efficiently resolving the combinatorial issue with the help of optimal MS strategy for a given TA for ET. Closed-form expressions for the optimal TA in D2D and cellular modes are also derived to gain further analytical insights. Numerical results show that the joint optimal MS and TA, which significantly outperforms the benchmark schemes in terms of achievable RF-powered sum-Throughput, is closely followed by the optimal TA scheme for D2D users. In fact, about 2/3 fraction of the total user pairs prefer to follow the D2D mode for efficient RF-powered IT

    Ga0.35In0.65 N0.02As0.08/GaAs bidirectional light-emitting and light-absorbing heterojunction operating at 1.3 μm

    Get PDF
    The Top-Hat hot electron light emission and lasing in semiconductor heterostructure (HELLISH)-vertical-cavity semiconductor optical amplifier (THH-VCSOA) is a bidirectional light-emitting and light-absorbing heterojunction device. The device contains 11 Ga0.35In0.65 N0.02As0.08/GaAs MQWs in its intrinsic active region which is enclosed between six pairs of AlAs/GaAs top distributed Bragg reflectors (DBRs) and 20.5 pairs of AlAs/GaAs bottom DBR mirrors. The THH-VCSOA is fabricated using a four-contact configuration. The wavelength conversion with amplification is achieved by the appropriate biasing of the absorption and emission regions within the device. Absorption and emission regions may be reversed by changing the polarity of the applied voltage. Emission wavelength is about 1,300 nm and a maximum gain at this wavelength is around 5 dB at T = 300 K

    Distributed Sum-Rate Maximization of Cellular Communications with Multiple Reconfigurable Intelligent Surfaces

    Get PDF
    The technology of Reconfigurable Intelligent Surfaces (RISs) has lately attracted considerable interest from both academia and industry as a low-cost solution for coverage extension and signal propagation control. In this paper, we study the downlink of a multi-cell wideband communication system comprising single-antenna Base Stations (BSs) and their associated single-antenna users, as well as multiple passive RISs. We assume that each BS controls a separate RIS and performs Orthogonal Frequency Division Multiplexing (OFDM) transmissions. Differently from various previous works where the RIS unit elements are considered as frequency-flat phase shifters, we model them as Lorentzian resonators and present a joint design of the BSs' power allocation, as well as the phase profiles of the multiple RISs, targeting the sum-rate maximization of the multi-cell system. We formulate a challenging distributed nonconvex optimization problem, which is solved via successive concave approximation. The distributed implementation of the proposed design is discussed, and the presented simulation results showcase the interplay of the various system parameters on the sum rate, verifying the performance boosting role of RISs.Comment: 5 pages, 1 figure. Presented in IEEE SPAWC 202

    Optical gain in 1.3-μm electrically driven dilute nitride VCSOAs

    Get PDF
    We report the observation of room-temperature optical gain at 1.3 μm in electrically driven dilute nitride vertical cavity semiconductor optical amplifiers. The gain is calculated with respect to injected power for samples with and without a confinement aperture. At lower injected powers, a gain of almost 10 dB is observed in both samples. At injection powers over 5 nW, the gain is observed to decrease. For nearly all investigated power levels, the sample with confinement aperture gives slightly higher gain

    Data-precoded algorithm for multiple-relay-assisted systems

    Get PDF
    A data-precoded relay-assisted (RA) scheme is proposed for a system cooperating with multiple relay nodes (RNs), each equipped with either a single-antenna or a two-antenna array. The classical RA systems using distributed space-time/frequency coding algorithms, because of the half-duplex constraint at the relays, require the use of a higher order constellation than in the case of a continuous link transmission from the base station to the user terminal. This implies a penalty in the power efficiency. The proposed precoding algorithm exploits the relation between QPSK and 4 L -QAM, by alternately transmitting through L relays, achieving full diversity, while significantly reducing power penalty. This algorithm explores the situations where a direct path (DP) is not available or has poor quality, and it is a promising solution to extend coverage or increase system capacity. We present the analytical derivation of the gain obtained with the data-precoded algorithm in comparison with distributed space-frequency block code (SFBC) ones. Furthermore, analysis of the pairwise error probability of the proposed algorithm is derived and confirmed with numerical results. We evaluate the performance of the proposed scheme and compare it relatively to the equivalent distributed SFBC scheme employing 16-QAM and non-cooperative schemes, for several link quality scenarios and scheme configurations, highlighting the advantages of the proposed scheme

    Adaptive Polynomial Chaos Expansion for Uncertainty Quantification and Optimization of Horn Antennas at SubTHz Frequencies

    Full text link
    Sub-terahertz (subTHz) antennas will play an important role in the next generations of wireless communication systems. However, when comes to the subTHz frequency spectrum, the antenna fabrication tolerance needs to be accurately considered during the design stage. The classic approach to studying the average performance of an antenna design considering fabrication tolerances is through the use of the Monte-Carlo (MC) method. In this paper, we propose an adaptive polynomial chaos expansion (PCE) method for the uncertainty quantification analysis of subTHz horn antennas with flat-top radiation patterns. The proposed method builds a surrogate model of the antenna's response to electromagnetic (EM) excitation and estimates its statistical moments with accuracy close to the reference MC method, but with a much smaller computational complexity of roughly two orders of magnitude. Moreover, the surrogate model based on PCE can substitute full-wave EM solvers in producing samples for electromagnetic quantities of interest, resulting in significant computational efficiency gains during optimization tasks. To this end, we successfully combined PCE with the particle swarm optimization method to design the free parameters of a horn antenna at 9595 GHz for a flat-top gain.Comment: 10 pages, 12 figures, submitted to an IEEE Transactions Journa

    Wnt5a induces ROR1 to complex with HS1 to enhance migration of chronic lymphocytic leukemia cells.

    Get PDF
    ROR1 (receptor tyrosine kinase-like orphan receptor 1) is a conserved, oncoembryonic surface antigen expressed in chronic lymphocytic leukemia (CLL). We found that ROR1 associates with hematopoietic-lineage-cell-specific protein 1 (HS1) in freshly isolated CLL cells or in CLL cells cultured with exogenous Wnt5a. Wnt5a also induced HS1 tyrosine phosphorylation, recruitment of ARHGEF1, activation of RhoA and enhanced chemokine-directed migration; such effects could be inhibited by cirmtuzumab, a humanized anti-ROR1 mAb. We generated truncated forms of ROR1 and found its extracellular cysteine-rich domain or kringle domain was necessary for Wnt5a-induced HS1 phosphorylation. Moreover, the cytoplamic, and more specifically the proline-rich domain (PRD), of ROR1 was required for it to associate with HS1 and allow for F-actin polymerization in response to Wnt5a. Accordingly, we introduced single amino acid substitutions of proline (P) to alanine (A) in the ROR1 PRD at positions 784, 808, 826, 841 or 850 in potential SH3-binding motifs. In contrast to wild-type ROR1, or other ROR1P→︀A mutants, ROR1P(841)A had impaired capacity to recruit HS1 and ARHGEF1 to ROR1 in response to Wnt5a. Moreover, Wnt5a could not induce cells expressing ROR1P(841)A to phosphorylate HS1 or activate ARHGEF1, and was unable to enhance CLL-cell motility. Collectively, these studies indicate HS1 plays an important role in ROR1-dependent Wnt5a-enhanced chemokine-directed leukemia-cell migration
    corecore