1,971 research outputs found

    Lithium abundances in nearby FGK dwarf and subgiant stars: internal destruction, Galactic chemical evolution, and exoplanets

    Full text link
    We derive atmospheric parameters and lithium abundances for 671 stars and include our measurements in a literature compilation of 1381 dwarf and subgiant stars. First, a "lithium desert" in the effective temperature (Teff) versus lithium abundance (A_Li) plane is observed such that no stars with Teff~6075 K and A_Li~1.8 are found. We speculate that most of the stars on the low A_Li side of the desert have experienced a short-lived period of severe surface lithium destruction as main-sequence or subgiant stars. Next, we search for differences in the lithium content of thin-disk and thick-disk stars, but we find that internal processes have erased from the stellar photospheres their possibly different histories of lithium enrichment. Nevertheless, we note that the maximum lithium abundance of thick-disk stars is nearly constant from [Fe/H]=-1.0 to -0.1, at a value that is similar to that measured in very metal-poor halo stars (A_Li~2.2). Finally, differences in the lithium abundance distribution of known planet-host stars relative to otherwise ordinary stars appear when restricting the samples to narrow ranges of Teff or mass, but they are fully explained by age and metallicity biases. We confirm the lack of a connection between low lithium abundance and planets. However, we find that no low A_Li planet-hosts are found in the desert Teff window. Provided that subtle sample biases are not responsible for this observation, this suggests that the presence of gas giant planets inhibit the mechanism responsible for the lithium desert.Comment: ApJ, in press. Complete Tables 1 and 3 are available upon reques

    Oxygen Abundances in Nearby FGK Stars and the Galactic Chemical Evolution of the Local Disk and Halo

    Get PDF
    Atmospheric parameters and oxygen abundances of 825 nearby FGK stars are derived using high-quality spectra and a non-LTE analysis of the 777 nm O I triplet lines. We assign a kinematic probability for the stars to be thin-disk (P1), thick-disk (P2), and halo (P3) members. We confirm previous findings of enhanced [O/Fe] in thick-disk (P2>0.5) relative to thin-disk (P1>0.5) stars with [Fe/H]<-0.2, as well as a "knee" that connects the mean [O/Fe]-[Fe/H] trend of thick-disk stars with that of thin-disk members at [Fe/H]>-0.2. Nevertheless, we find that the kinematic membership criterion fails at separating perfectly the stars in the [O/Fe]-[Fe/H] plane, even when a very restrictive kinematic separation is employed. Stars with "intermediate" kinematics (P1<0.7, P2<0.7) do not all populate the region of the [O/Fe]-[Fe/H] plane intermediate between the mean thin-disk and thick-disk trends, but their distribution is not necessarily bimodal. Halo stars (P3>0.5) show a large star-to-star scatter in [O/Fe]-[Fe/H], but most of it is due to stars with Galactocentric rotational velocity V-200 km/s follow an [O/Fe]-[Fe/H] relation with almost no star-to-star scatter. Early mergers with satellite galaxies explain most of our observations, but the significant fraction of disk stars with "ambiguous" kinematics and abundances suggests that scattering by molecular clouds and radial migration have both played an important role in determining the kinematic and chemical properties of solar neighborhood stars.Comment: ApJ, in press. Complete tables 2-6 are available in the source (Download: Other formats -> Source

    Magnetostatic interactions between magnetic nanotubes

    Full text link
    The investigation of interactions between magnetic nanotubes is complex and often involves substantial simplifications. In this letter an analytical expression for the magnetostatic interaction, taking into account the geometry of the tubes, has been obtained. This expression allows for the definition of a critical vertical separation for relative magnetization between nanotubes and can be used for tailoring barcode-type nanostructures with prospective applications such as biological separation and transport.Comment: 4 pages, 5 figure

    Reversal modes in magnetic nanotubes

    Full text link
    The magnetic switching of ferromagnetic nanotubes is investigated as a function of their geometry. Two independent methods are used: Numerical simulations and analytical calculations. It is found that for long tubes the reversal of magnetization is achieved by two mechanism: The propagation of a transverse or a vortex domain wall depending on the internal and external radii of the tube.Comment: 4 pages, 4 figure

    The Lowest Mass White Dwarf

    Get PDF
    Extremely low mass white dwarfs are very rare objects likely formed in compact binary systems. We present MMT optical spectroscopy of 42 low mass white dwarf candidates serendipitously discovered in a survey for hypervelocity B-type stars. One of these objects, SDSS J0917+46, has Teff= 11,288 \pm 72 K and log g = 5.48 \pm 0.03; with an estimated mass of 0.17 M_sun, it is the lowest gravity/mass white dwarf currently known. However, 40 of the low mass candidates are normal DA white dwarfs with apparently inaccurate SDSS g magnitudes. We revisit the identification of low mass white dwarf candidates previously found in the SDSS, and conclude that four objects have M < 0.2 M_sun. None of these white dwarfs show excess emission from a binary companion, and radial velocity searches will be necessary to constrain the nature of the unseen companions.Comment: ApJ, accepted versio

    S4N: A Spectroscopic Survey of Stars in the Solar Neighborhood

    Full text link
    [ABRIDGED] We report the results of a high-resolution spectroscopic survey of all the stars more luminous than Mv = 6.5 mag within 14.5 pc from the Sun. We derive stellar parameters and perform a preliminary abundance and kinematic analysis of the F-G-K stars in the sample. The inferred metallicity ([Fe/H]) distribution is centered at about -0.1 dex, and shows a standard deviation of 0.2 dex. We identify a number of metal-rich K-type stars which appear to be very old, confirming the claims for the existence of such stars in the solar neighborhood. With atmospheric effective temperatures and gravities derived independently of the spectra, we find that our classical LTE model-atmosphere analysis of metal-rich (and mainly K-type) stars provides discrepant abundances from neutral and ionized lines of several metals. Based on transitions of majority species, we discuss abundances of 16 chemical elements. In agreement with earlier studies we find that the abundance ratios to iron of Si, Sc, Ti, Co, and Zn become smaller as the iron abundance increases until approaching the solar values, but the trends reverse for higher iron abundances. At any given metallicity, stars with a `low' galactic rotational velocity tend to have high abundances of Mg, Si, Ca, Sc, Ti, Co, Zn, and Eu, but low abundances of Ba, Ce, and Nd. The Sun appears deficient by roughly 0.1 dex in O, Si, Ca, Sc, Ti, Y, Ce, Nd, and Eu, compared to its immediate neighbors with similar iron abundances.Comment: 24 pages, 19 figures, to appear in A&A; data can be accessed from http://hebe.as.utexas.edu/s4n/ or http://www.astro.uu.se/~s4n
    corecore