664 research outputs found
Characterizing Young Brown Dwarfs using Low Resolution Near-IR Spectra
We present near-infrared (1.0-2.4 micron) spectra confirming the youth and
cool effective temperatures of 6 brown dwarfs and low mass stars with
circumstellar disks toward the Chamaeleon II and Ophiuchus star forming
regions. The spectrum of one of our objects indicates that it has a spectral
type of ~L1, making it one of the latest spectral type young brown dwarfs
identified to date. Comparing spectra of young brown dwarfs, field dwarfs, and
giant stars, we define a 1.49-1.56 micron H2O index capable of determining
spectral type to within 1 sub-type, independent of gravity. We have also
defined an index based on the 1.14 micron sodium feature that is sensitive to
gravity, but only weakly dependent on spectral type for field dwarfs. Our 1.14
micron Na index can be used to distinguish young cluster members (t <~ 5 Myr)
from young field dwarfs, both of which may have the triangular H-band continuum
shape which persists for at least tens of Myr. Using effective temperatures
determined from the spectral types of our objects along with luminosities
derived from near and mid-infrared photometry, we place our objects on the H-R
diagram and overlay evolutionary models to estimate the masses and ages of our
young sources. Three of our sources have inferred ages (t ~= 10-30 Myr)
significantly older than the median stellar age of their parent clouds (1-3
Myr). For these three objects, we derive masses ~3 times greater than expected
for 1-3 Myr old brown dwarfs with the bolometric luminosities of our sources.
The large discrepancies in the inferred masses and ages determined using two
separate, yet reasonable methods, emphasize the need for caution when deriving
or exploiting brown dwarf mass and age estimates.Comment: 11 pages, Accepted to Ap
Essential and checkpoint functions of budding yeast ATM and ATR during meiotic prophase are facilitated by differential phosphorylation of a meiotic adaptor protein, Hop1
A hallmark of the conserved ATM/ATR signalling is its ability to mediate a wide range of functions utilizing only a limited number of adaptors and effector kinases. During meiosis, Tel1 and Mec1, the budding yeast ATM and ATR, respectively, rely on a meiotic adaptor protein Hop1, a 53BP1/Rad9 functional analog, and its associated kinase Mek1, a CHK2/Rad53-paralog, to mediate multiple functions: control of the formation and repair of programmed meiotic DNA double strand breaks, enforcement of inter-homolog bias, regulation of meiotic progression, and implementation of checkpoint responses. Here, we present evidence that the multi-functionality of the Tel1/Mec1-to-Hop1/Mek1 signalling depends on stepwise activation of Mek1 that is mediated by Tel1/Mec1 phosphorylation of two specific residues within Hop1: phosphorylation at the threonine 318 (T318) ensures the transient basal level Mek1 activation required for viable spore formation during unperturbed meiosis. Phosphorylation at the serine 298 (S298) promotes stable Hop1-Mek1 interaction on chromosomes following the initial phospho-T318 mediated Mek1 recruitment. In the absence of Dmc1, the phospho-S298 also promotes Mek1 hyper-activation necessary for implementing meiotic checkpoint arrest. Taking these observations together, we propose that the Hop1 phospho-T318 and phospho-S298 constitute key components of the Tel1/Mec1- based meiotic recombination surveillance (MRS) network and facilitate effective coupling of meiotic recombination and progression during both unperturbed and challenged meiosis
A focus on L dwarfs with trigonometric parallaxes
This is an author-created, un-copyedited version of an article published in Publications of the Astronomical Society of the Pacific. Under embargo until 14 May 2019. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/1538-3873/aaacc5.We report new parallax measurements for ten L and early T type dwarfs, five of which have no previous published values, using observations over 3 years at the robotic Liverpool Telescope. The resulting parallaxes and proper motions have median errors of 2\,mas and 1.5\,mas/year respectively. Their space motions indicate they are all Galactic disk members. We combined this sample with other objects with astrometry from the Liverpool Telescope and with published literature astrometry to construct a sample of 260 L and early T type dwarfs with measured parallaxes, designated the Astrometry Sample. We study the kinematics of the Astrometry Sample, and derived a solar motion of \,\kms~ with respect to the local standard of rest, in agreement with recent literature. We derive a kinematic age of 1.5-1.7\,Gyr for the Astrometry Sample assuming the age increases monotonically with the total velocity for a given disk sample. This kinematic age is less than half literature values for other low mass dwarf samples. We believe this difference arises for two reasons (1) the sample is mainly composed of mid to late L dwarfs which are expected to be relatively young and (2) the requirement that objects have a measured parallax biases the sample to the brighter examples which tend to be younger.Peer reviewedFinal Accepted Versio
An L Band Spectrum of the Coldest Brown Dwarf
The coldest brown dwarf, WISE 0855, is the closest known planetary-mass,
free-floating object and has a temperature nearly as cold as the solar system
gas giants. Like Jupiter, it is predicted to have an atmosphere rich in
methane, water, and ammonia, with clouds of volatile ices. WISE 0855 is faint
at near-infrared wavelengths and emits almost all its energy in the
mid-infrared. Skemer et al. 2016 presented a spectrum of WISE 0855 from 4.5-5.1
micron (M band), revealing water vapor features. Here, we present a spectrum of
WISE 0855 in L band, from 3.4-4.14 micron. We present a set of atmosphere
models that include a range of compositions (metallicities and C/O ratios) and
water ice clouds. Methane absorption is clearly present in the spectrum. The
mid-infrared color can be better matched with a methane abundance that is
depleted relative to solar abundance. We find that there is evidence for water
ice clouds in the M band spectrum, and we find a lack of phosphine spectral
features in both the L and M band spectra. We suggest that a deep continuum
opacity source may be obscuring the near-infrared flux, possibly a deep
phosphorous-bearing cloud, ammonium dihyrogen phosphate. Observations of WISE
0855 provide critical constraints for cold planetary atmospheres, bridging the
temperature range between the long-studied solar system planets and accessible
exoplanets. JWST will soon revolutionize our understanding of cold brown dwarfs
with high-precision spectroscopy across the infrared, allowing us to study
their compositions and cloud properties, and to infer their atmospheric
dynamics and formation processes.Comment: 19 pages, 21 figures. Accepted for publication in Ap
A new L-dwarf member of the moderately metal-poor triple system HD 221356
We report on the discovery of a fourth component in the HD 221356 star
system, previously known to be formed by an F8V, slightly metal-poor primary
([Fe/H]=-0.26), and a distant M8V+L3V pair. In our ongoing common proper motion
search based on VISTA Hemisphere Survey (VHS) and 2MASS catalogues, we have
detected a faint (J=13.76+/-0.04 mag) co-moving companion of the F8 star
located at angular separation of 12.13+/-0.18 arcsec (position angle of
221.8+/-1.7), corresponding to a projected distance of ~312 AU at 26 pc.
Near-infrared spectroscopy of the new companion, covering the 1.5-2.4 micron
wavelength range with a resolving power of R~600, indicates an L1+/-1 spectral
type. Using evolutionary models the mass of the new companion is estimated at
~0.08 solar masses, which places the object close to the stellar-substellar
borderline. This multiple system provides an interesting example of objects
with masses slightly above and below the hydrogen burning mass limit. The low
mass companions of HD 221356 have slightly bluer colours than field dwarfs with
similar spectral type, which is likely a consequence of the sub-solar
metallicity of the system.Comment: 7 pages, 4 figures, accepted for publication in MNRA
Far-Ultraviolet Dust Albedo Measurements in the Upper Scorpius Cloud Using the SPINR Sounding Rocket Experiment
The Spectrograph for Photometric Imaging with Numeric Reconstruction (SPINR)
sounding rocket experiment was launched on 2000 August 4 to record
far-ultraviolet (912-1450 A) spectral and spatial information for the giant
reflection nebula in the Upper Scorpius region. The data were divided into
three arbitrary bandpasses (912-1029 A, 1030-1200 A, and 1235-1450 A) for which
stellar and nebular flux levels were derived. These flux measurements were used
to constrain a radiative transfer model and to determine the dust albedo for
the Upper Scorpius region. The resulting albedos were 0.28+/-0.07 for the
912-1029 A bandpass, 0.33+/-0.07 for the 1030-1200 A bandpass, and 0.77+/-0.13
for the 1235-1450 A bandpass
A WFI survey in the Chamaeleon II dark cloud
We present the results of an optical multi-band survey for low-mass Pre-Main
Sequence (PMS) stars and young Brown Dwarfs (BDs) in the Chamaeleon II (Cha II)
dark cloud. This survey constitutes the complementary optical data to the c2d
Spitzer Legacy survey in Cha II.
Using the Wide-Field Imager (WFI) at the ESO 2.2m telescope, we surveyed a
sky area of about 1.75 square degrees in Cha II. The region was observed in the
Rc, Ic and z broad-bands, in H-alpha and in two medium-band filters centered at
856 and 914 nm. We select PMS star and young BD candidates using
colour-magnitude diagrams (CMDs) and theoretical isochrones reproduced ad-hoc
for the WFI at the ESO2.2m telescope system. The selection criteria are also
reinforced by using the previously known PMS stars in Cha II to define the PMS
locus on the CMDs and by investigating the infrared (IR) colours of the
candidates. By exploiting the WFI intermediate-band photometry we also estimate
the effective temperature and the level of H-alpha emission of the candidates.
Our survey, which is one of the largest and deepest optical surveys conducted
so far in Cha II, recovered the majority of the PMS stars and 10 member
candidates of the cloud from previous IR surveys. In addition, the survey
revealed 10 new potential members. From our photometric characterisation, we
estimate that some 50% of the 20 candidates will result in true Cha II members.
Based on our temperature estimates, we conclude that several of these objects
are expected to be sub-stellar and give a first estimate of the fraction of
sub-stellar objects.Comment: 26 pages, 18 figure
UWISH2 -- The UKIRT Widefield Infrared Survey for H2
We present the goals and preliminary results of an unbiased, near-infrared,
narrow-band imaging survey of the First Galactic Quadrant (10deg<l<65deg ;
-1.3deg<b<+1.3deg). This area includes most of the Giant Molecular Clouds and
massive star forming regions in the northern hemisphere. The survey is centred
on the 1-0S(1) ro-vibrational line of H2, a proven tracer of hot, dense
molecular gas in star-forming regions, around evolved stars, and in supernova
remnants. The observations complement existing and upcoming photometric surveys
(Spitzer-GLIMPSE, UKIDSS-GPS, JCMT-JPS, AKARI, Herschel Hi-GAL, etc.), though
we probe a dynamically active component of star formation not covered by these
broad-band surveys. Our narrow-band survey is currently more than 60% complete.
The median seeing in our images is 0.73arcsec. The images have a 5sigma
detection limit of point sources of K=18mag and the surface brightness limit is
10^-19Wm^-2arcsec^-2 when averaged over our typical seeing. Jets and outflows
from both low and high mass Young Stellar Objects are revealed, as are new
Planetary Nebulae and - via a comparison with earlier K-band observations
acquired as part of the UKIDSS GPS - numerous variable stars. With their
superior spatial resolution, the UWISH2 data also have the potential to reveal
the true nature of many of the Extended Green Objects found in the GLIMPSE
survey.Comment: 14pages, 8figures, 2tables, accepted for publication by MNRAS, a
version with higher resolution figures can be found at
http://astro.kent.ac.uk/~df
- …
