4,117 research outputs found
The XMM-Newton Slew Survey: towards the XMMSL1 catalogue
The XMM-Newton satellite is the most sensitive X-ray observatory flown to
date due to the great collecting area of its mirrors coupled with the high
quantum efficiency of the EPIC detectors. It performs slewing manoeuvers
between observation targets tracking almost circular orbits through the
ecliptic poles due to the Sun constraint. Slews are made with the EPIC cameras
open and the other instruments closed, operating with the observing mode set to
the one of the previous pointed observation and the medium filter in place.
Slew observations from the EPIC-pn camera in FF, eFF and LW modes provide
data, resulting in a maximum of 15 seconds of on-source time. These data can be
used to give a uniform survey of the X-ray sky, at great sensitivity in the
hard band compared with other X-ray all-sky surveys.Comment: 2 pages, 2 figures, to appear in the proceedings of "The X-ray
Universe 2005", San Lorenzo de El Escorial (Spain), 26-30 September 200
The XMM-Newton Slew Survey
XMM-Newton, with the huge collecting area of its mirrors and the high quantum
efficiency of its EPIC detectors, is the most sensitive X-ray observatory ever
flown. This is strikingly evident during slew exposures, which, while yielding
only at most 14 seconds of on-source exposure time, actually constitute a 2-10
keV survey ten times deeper than all other "all-sky" surveys. The current
(April 2005) XMM archive contains 374 slew exposures which give a uniform
coverage over around 10,000 square degrees (approx. 25% of the sky). Here we
describe the results of pilot studies, the current status of the XMM-Newton
Slew Survey, up-to-date results and our progress towards constructing a
catalogue of slew detections in the full 0.2-12 keV energy band.Comment: 3 pages, 4 figures, XMM-Newton EPIC Consortium Meeting, Schloss
Ringberg, Germany, April 2005, to appear in MPE Repor
Extended sources in the XMM-Newton slew survey
The low background, good spatial resolution and great sensitivity of the
EPIC-pn camera on XMM-Newton give useful limits for the detection of extended
sources even during the short exposures made during slewing maneouvers. In this
paper we attempt to illustrate the potential of the XMM-Newton slew survey as a
tool for analysing flux-limited samples of clusters of galaxies and other
sources of spatially extended X-ray emission.Comment: 2 pages, 4 figures, to appear in the proceedings of "The X-ray
Universe 2005", San Lorenzo de El Escorial (Spain), 26-30 September 200
Statistical analysis of impact forces and permanent deformations of fuel assembly spacer grids in the context of seismic fragility
Magnetic versus crystal field linear dichroism in NiO thin films
We have detected strong dichroism in the Ni x-ray absorption
spectra of monolayer NiO films. The dichroic signal appears to be very similar
to the magnetic linear dichroism observed for thicker antiferromagnetic NiO
films. A detailed experimental and theoretical analysis reveals, however, that
the dichroism is caused by crystal field effects in the monolayer films, which
is a non trivial effect because the high spin Ni ground state is not
split by low symmetry crystal fields. We present a practical experimental
method for identifying the independent magnetic and crystal field contributions
to the linear dichroic signal in spectra of NiO films with arbitrary
thicknesses and lattice strains. Our findings are also directly relevant for
high spin and systems such as LaFeO, FeO,
VO, LaCrO, CrO, and Mn manganate thin films
Human cancers over express genes that are specific to a variety of normal human tissues
We have analyzed gene expression data from 3 different kinds of samples:
normal human tissues, human cancer cell lines and leukemic cells from lymphoid
and myeloid leukemia pediatric patients. We have searched for genes that are
over expressed in human cancer and also show specific patterns of
tissue-dependent expression in normal tissues. Using the expression data of the
normal tissues we identified 4346 genes with a high variability of expression,
and clustered these genes according to their relative expression level. Of 91
stable clusters obtained, 24 clusters included genes preferentially expressed
either only in hematopoietic tissues or in hematopoietic and 1-2 other tissues;
28 clusters included genes preferentially expressed in various
non-hematopoietic tissues such as neuronal, testis, liver, kidney, muscle,
lung, pancreas and placenta. Analysis of the expression levels of these 2
groups of genes in the human cancer cell lines and leukemias, identified genes
that were highly expressed in cancer cells but not in their normal
counterparts, and were thus over expressed in the cancers. The different cancer
cell lines and leukemias varied in the number and identity of these over
expressed genes. The results indicate that many genes that are over expressed
in human cancer cells are specific to a variety of normal tissues, including
normal tissues other than those from which the cancer originated. It is
suggested that this general property of cancer cells plays a major role in
determining the behavior of the cancers, including their metastatic potential.Comment: To appear in PNA
- …
