3,699 research outputs found
On the phase-space structure of the Milky Way dark-matter halo
We analyse a high resolution simulation of the formation of a cluster's
dark-matter halo in a CDM cosmology (Springel et al. 2001). The
resolution achieved allows us to map the phase-space structure in detail, and
characterize its evolution and degree of lumpiness. Scaling down the cluster
halo to a Milky-Way size halo, we probe the substructure expected in the solar
neighbourhood. Here we specifically address the relevance of such substructure
for direct detection experiments aimed at determining the nature of
dark-matter.Comment: 4 pages, 5 figures, uses dunk2001_asp.sty, to appear in "The
Dynamics, Structure and History of Galaxies: A Workshop in Honour of Prof.
Ken Freeman", (eds) G. S. Da Costa & E. M. Sadler, ASP Conf Serie
Enabling Communication Technologies for Automated Unmanned Vehicles in Industry 4.0
Within the context of Industry 4.0, mobile robot systems such as automated
guided vehicles (AGVs) and unmanned aerial vehicles (UAVs) are one of the major
areas challenging current communication and localization technologies. Due to
stringent requirements on latency and reliability, several of the existing
solutions are not capable of meeting the performance required by industrial
automation applications. Additionally, the disparity in types and applications
of unmanned vehicle (UV) calls for more flexible communication technologies in
order to address their specific requirements. In this paper, we propose several
use cases for UVs within the context of Industry 4.0 and consider their
respective requirements. We also identify wireless technologies that support
the deployment of UVs as envisioned in Industry 4.0 scenarios.Comment: 7 pages, 1 figure, 1 tabl
Cohomology of acting on the space of bilinear differential operators on the superspace
We compute the first cohomology of the ortosymplectic Lie superalgebra
on the (1,1)-dimensional real superspace with
coefficients in the superspace of bilinear
differential operators acting on weighted densities. This work is the simplest
superization of a result by Bouarroudj [Cohomology of the vector fields Lie
algebras on acting on bilinear differential operators,
International Journal of Geometric Methods in Modern Physics
(2005), {\bf 2}; N 1, 23-40]
Polycistronic Delivery of IL-10 and NT-3 Promotes Oligodendrocyte Myelination and Functional Recovery in a Mouse Spinal Cord Injury Model.
One million estimated cases of spinal cord injury (SCI) have been reported in the United States and repairing an injury has constituted a difficult clinical challenge. The complex, dynamic, inhibitory microenvironment postinjury, which is characterized by proinflammatory signaling from invading leukocytes and lack of sufficient factors that promote axonal survival and elongation, limits regeneration. Herein, we investigated the delivery of polycistronic vectors, which have the potential to coexpress factors that target distinct barriers to regeneration, from a multiple channel poly(lactide-co-glycolide) (PLG) bridge to enhance spinal cord regeneration. In this study, we investigated polycistronic delivery of IL-10 that targets proinflammatory signaling, and NT-3 that targets axonal survival and elongation. A significant increase was observed in the density of regenerative macrophages for IL-10+NT-3 condition relative to conditions without IL-10. Furthermore, combined delivery of IL-10+NT-3 produced a significant increase of axonal density and notably myelinated axons compared with all other conditions. A significant increase in functional recovery was observed for IL-10+NT-3 delivery at 12 weeks postinjury that was positively correlated to oligodendrocyte myelinated axon density, suggesting oligodendrocyte-mediated myelination as an important target to improve functional recovery. These results further support the use of multiple channel PLG bridges as a growth supportive substrate and platform to deliver bioactive agents to modulate the SCI microenvironment and promote regeneration and functional recovery. Impact statement Spinal cord injury (SCI) results in a complex microenvironment that contains multiple barriers to regeneration and functional recovery. Multiple factors are necessary to address these barriers to regeneration, and polycistronic lentiviral gene therapy represents a strategy to locally express multiple factors simultaneously. A bicistronic vector encoding IL-10 and NT-3 was delivered from a poly(lactide-co-glycolide) bridge, which provides structural support that guides regeneration, resulting in increased axonal growth, myelination, and subsequent functional recovery. These results demonstrate the opportunity of targeting multiple barriers to SCI regeneration for additive effects
Design, Implementation and Evaluation of a National Campaign to Deliver 18 Million Free Long-Lasting Insecticidal Nets to Uncovered Sleeping Spaces in Tanzania.
Since 2004, the Tanzanian National Voucher Scheme has increased availability and accessibility of insecticide-treated nets (ITNs) to pregnant women and infants by subsidizing the cost of nets purchased. From 2008 to 2010, a mass distribution campaign delivered nine million long-lasting insecticidal nets (LLINs) free-of-charge to children under-five years of age in Tanzania mainland. In 2010 and 2011, a Universal Coverage Campaign (UCC) led by the Ministry of Health and Social Welfare (MoHSW) was implemented to cover all sleeping spaces not yet reached through previous initiatives. The UCC was coordinated through a unit within the National Malaria Control Programme. Partners were contracted by the MoHSW to implement different activities in collaboration with local government authorities. Volunteers registered the number of uncovered sleeping spaces in every household in the country. On this basis, LLINs were ordered and delivered to village level, where they were issued over a three-day period in each zone (three regions). Household surveys were conducted in seven districts immediately after the campaign to assess net ownership and use. The UCC was chiefly financed by the Global Fund to Fight AIDS, Tuberculosis and Malaria with important contributions from the US President's Malaria Initiative. A total of 18.2 million LLINs were delivered at an average cost of USD 5.30 per LLIN. Overall, 83% of the expenses were used for LLIN procurement and delivery and 17% for campaign associated activities. Preliminary results of the latest Tanzania HIV Malaria Indicator Survey (2011-12) show that household ownership of at least one ITN increased to 91.5%. ITN use, among children under-five years of age, improved to 72.7% after the campaign. ITN ownership and use data post-campaign indicated high equity across wealth quintiles. Close collaboration among the MoHSW, donors, contracted partners, local government authorities and volunteers made it possible to carry out one of the largest LLIN distribution campaigns conducted in Africa to date. Through the strong increase of ITN use, the recent activities of the national ITN programme will likely result in further decline in child mortality rates in Tanzania, helping to achieve Millennium Development Goals 4 and 6
Recommended from our members
Common DNA sequence variation influences 3-dimensional conformation of the human genome.
BACKGROUND:The 3-dimensional (3D) conformation of chromatin inside the nucleus is integral to a variety of nuclear processes including transcriptional regulation, DNA replication, and DNA damage repair. Aberrations in 3D chromatin conformation have been implicated in developmental abnormalities and cancer. Despite the importance of 3D chromatin conformation to cellular function and human health, little is known about how 3D chromatin conformation varies in the human population, or whether DNA sequence variation between individuals influences 3D chromatin conformation. RESULTS:To address these questions, we perform Hi-C on lymphoblastoid cell lines from 20 individuals. We identify thousands of regions across the genome where 3D chromatin conformation varies between individuals and find that this variation is often accompanied by variation in gene expression, histone modifications, and transcription factor binding. Moreover, we find that DNA sequence variation influences several features of 3D chromatin conformation including loop strength, contact insulation, contact directionality, and density of local cis contacts. We map hundreds of quantitative trait loci associated with 3D chromatin features and find evidence that some of these same variants are associated at modest levels with other molecular phenotypes as well as complex disease risk. CONCLUSION:Our results demonstrate that common DNA sequence variants can influence 3D chromatin conformation, pointing to a more pervasive role for 3D chromatin conformation in human phenotypic variation than previously recognized
PLG Bridge Implantation in Chronic SCI Promotes Axonal Elongation and Myelination.
Spinal cord injury (SCI) is a devastating condition that may cause permanent functional loss below the level of injury, including paralysis and loss of bladder, bowel, and sexual function. Patients are rarely treated immediately, and this delay is associated with tissue loss and scar formation that can make regeneration at chronic time points more challenging. Herein, we investigated regeneration using a poly(lactide-co-glycolide) multichannel bridge implanted into a chronic SCI following surgical resection of necrotic tissue. We characterized the dynamic injury response and noted that scar formation decreased at 4 and 8 weeks postinjury (wpi), yet macrophage infiltration increased between 4 and 8 wpi. Subsequently, the scar tissue was resected and bridges were implanted at 4 and 8 wpi. We observed robust axon growth into the bridge and remyelination at 6 months after initial injury. Axon densities were increased for 8 week bridge implantation relative to 4 week bridge implantation, whereas greater myelination, particularly by Schwann cells, was observed with 4 week bridge implantation. The process of bridge implantation did not significantly decrease the postinjury function. Collectively, this chronic model follows the pathophysiology of human SCI, and bridge implantation allows for clear demarcation of the regenerated tissue. These data demonstrate that bridge implantation into chronic SCI supports regeneration and provides a platform to investigate strategies to buttress and expand regeneration of neural tissue at chronic time points
- …
