36,632 research outputs found
RAVEN: a GUI and an Artificial Intelligence Engine in a Dynamic PRA Framework
Increases in computational power and pressure for
more accurate simulations and estimations of accident scenario consequences are driving the need for Dynamic
Probabilistic Risk Assessment (PRA) [1] of very complex models. While more sophisticated algorithms and
computational power address the back end of this challenge, the front end is still handled by engineers that
need to extract meaningful information from the large amount of data and build these complex models.
Compounding this problem is the difficulty in knowledge transfer and retention, and the increasing speed of
software development. The above-described issues would have negatively
impacted deployment of the new high fidelity plant simulator RELAP-7 (Reactor Excursion and Leak
Analysis Program) at Idaho National Laboratory. Therefore, RAVEN that was initially focused to be the
plant controller for RELAP-7 will help mitigate future
RELAP-7 software engineering risks. In order to accomplish such a task Reactor Analysis
and V
Evolution and Modern Approaches for Thermal Analysis of Electrical Machines
In this paper, the authors present an extended survey on the evolution and the modern approaches in the thermal analysis of electrical machines. The improvements and the new techniques proposed in the last decade are analyzed in depth and compared in order to highlight the qualities and defects of each. In particular, thermal analysis based on lumped-parameter thermal network, finite-element analysis, and computational fluid dynamics are considered in this paper. In addition, an overview of the problems linked to the thermal parameter determination and computation is proposed and discussed. Taking into account the aims of this paper, a detailed list of books and papers is reported in the references to help researchers interested in these topics
Dynamic PRA: an Overview of New Algorithms to Generate, Analyze and Visualize Data
State of the art PRA methods, i.e. Dynamic PRA
(DPRA) methodologies, largely employ system
simulator codes to accurately model system dynamics.
Typically, these system simulator codes (e.g., RELAP5 )
are coupled with other codes (e.g., ADAPT,
RAVEN that monitor and control the simulation. The
latter codes, in particular, introduce both deterministic
(e.g., system control logic, operating procedures) and
stochastic (e.g., component failures, variable uncertainties)
elements into the simulation. A typical DPRA analysis is
performed by:
1. Sampling values of a set of parameters from the
uncertainty space of interest
2. Simulating the system behavior for that specific set of
parameter values
3. Analyzing the set of simulation runs
4. Visualizing the correlations between parameter values
and simulation outcome
Step 1 is typically performed by randomly sampling
from a given distribution (i.e., Monte-Carlo) or selecting
such parameter values as inputs from the user (i.e.,
Dynamic Event Tre
Communication: Truncated non-bonded potentials can yield unphysical behavior in molecular dynamics simulations of interfaces
Non-bonded potentials are included in most force fields and therefore widely
used in classical molecular dynamics simulations of materials and interfacial
phenomena. It is commonplace to truncate these potentials for computational
efficiency based on the assumption that errors are negligible for reasonable
cutoffs or compensated for by adjusting other interaction parameters. Arising
from a metadynamics study of the wetting transition of water on a solid
substrate, we find that the influence of the cutoff is unexpectedly strong and
can change the character of the wetting transition from continuous to first
order by creating artificial metastable wetting states. Common cutoff
corrections such as the use of a force switching function, a shifted potential,
or a shifted force do not avoid this. Such a qualitative difference urges
caution and suggests that using truncated non-bonded potentials can induce
unphysical behavior that cannot be fully accounted for by adjusting other
interaction parameters
Dynamical Theory of Artificial Optical Magnetism Produced by Rings of Plasmonic Nanoparticles
We present a detailed analytical theory for the plasmonic nanoring
configuration first proposed in [A. Alu, A. Salandrino, N. Engheta, Opt. Expr.
14, 1557 (2006)], which is shown to provide negative magnetic permeability and
negative index of refraction at infrared and optical frequencies. We show
analytically how the nanoring configuration may provide superior performance
when compared to some other solutions for optical negative index materials,
offering a more 'pure' magnetic response at these high frequencies, which is
necessary for lowering the effects of radiation losses and absorption.
Sensitivity to losses and the bandwidth of operation of this magnetic inclusion
are also investigated in details and compared with other available setups.Comment: 34 pages, 3 figure
Robustness and epistasis in mutation-selection models
We investigate the fitness advantage associated with the robustness of a
phenotype against deleterious mutations using deterministic mutation-selection
models of quasispecies type equipped with a mesa shaped fitness landscape. We
obtain analytic results for the robustness effect which become exact in the
limit of infinite sequence length. Thereby, we are able to clarify a seeming
contradiction between recent rigorous work and an earlier heuristic treatment
based on a mapping to a Schr\"odinger equation. We exploit the quantum
mechanical analogy to calculate a correction term for finite sequence lengths
and verify our analytic results by numerical studies. In addition, we
investigate the occurrence of an error threshold for a general class of
epistatic landscape and show that diminishing epistasis is a necessary but not
sufficient condition for error threshold behavior.Comment: 20 pages, 14 figure
Two-point correlation properties of stochastic "cloud processes''
We study how the two-point density correlation properties of a point particle
distribution are modified when each particle is divided, by a stochastic
process, into an equal number of identical "daughter" particles. We consider
generically that there may be non-trivial correlations in the displacement
fields describing the positions of the different daughters of the same "mother"
particle, and then treat separately the cases in which there are, or are not,
correlations also between the displacements of daughters belonging to different
mothers. For both cases exact formulae are derived relating the structure
factor (power spectrum) of the daughter distribution to that of the mother.
These results can be considered as a generalization of the analogous equations
obtained in ref. [1] (cond-mat/0409594) for the case of stochastic displacement
fields applied to particle distributions. An application of the present results
is that they give explicit algorithms for generating, starting from regular
lattice arrays, stochastic particle distributions with an arbitrarily high
degree of large-scale uniformity.Comment: 14 pages, 3 figure
Orbifold resolutions with general profile
A very general class of resolved versions of the C/Z_N, T^2/Z_N and S^1/Z_2
orbifolds is considered and the free theory of 6D chiral fermions studied on
it. As the orbifold limit is taken, localized 4D chiral massless fermions are
seen to arise at the fixed points. Their number, location and chirality is
found to be independent on the detailed profile of the resolving space and to
agree with the result of hep-th/0409229, in which a particular resolution was
employed. As a consistency check of the resolution procedure, the massive
equation is numerically studied. In particular, for S^1/Z_2, the "resolved"
mass--spectrum and wave functions in the internal space are seen to correctly
reproduce the usual orbifold ones, as the orbifold limit is taken.Comment: 28 pages, 3 figures, typos corrected, references adde
The 2007 Provincial Election and Electoral System Referendum in Ontario
Ontario’s general election in Oct. 10, 2007, was unprecedented for several reasons. The election was held on a date fixed by legislation and not one set by the premier or his caucus, something new to Ontario and relatively new to Canadian politics. Turnout declined to 53%, the lowest ever in Ontario history. The incumbent Liberals won a second consecutive majority government, something the party had not achieved since 1937. And finally, the election featured a referendum question that asked voters in Ontario to approve reforms to the electoral system, a proposal that was overwhelmingly rejected. This article explores each of the above-stated elements as they unfolded in the election
- …
