36,632 research outputs found

    RAVEN: a GUI and an Artificial Intelligence Engine in a Dynamic PRA Framework

    Get PDF
    Increases in computational power and pressure for more accurate simulations and estimations of accident scenario consequences are driving the need for Dynamic Probabilistic Risk Assessment (PRA) [1] of very complex models. While more sophisticated algorithms and computational power address the back end of this challenge, the front end is still handled by engineers that need to extract meaningful information from the large amount of data and build these complex models. Compounding this problem is the difficulty in knowledge transfer and retention, and the increasing speed of software development. The above-described issues would have negatively impacted deployment of the new high fidelity plant simulator RELAP-7 (Reactor Excursion and Leak Analysis Program) at Idaho National Laboratory. Therefore, RAVEN that was initially focused to be the plant controller for RELAP-7 will help mitigate future RELAP-7 software engineering risks. In order to accomplish such a task Reactor Analysis and V

    Evolution and Modern Approaches for Thermal Analysis of Electrical Machines

    Get PDF
    In this paper, the authors present an extended survey on the evolution and the modern approaches in the thermal analysis of electrical machines. The improvements and the new techniques proposed in the last decade are analyzed in depth and compared in order to highlight the qualities and defects of each. In particular, thermal analysis based on lumped-parameter thermal network, finite-element analysis, and computational fluid dynamics are considered in this paper. In addition, an overview of the problems linked to the thermal parameter determination and computation is proposed and discussed. Taking into account the aims of this paper, a detailed list of books and papers is reported in the references to help researchers interested in these topics

    Dynamic PRA: an Overview of New Algorithms to Generate, Analyze and Visualize Data

    Get PDF
    State of the art PRA methods, i.e. Dynamic PRA (DPRA) methodologies, largely employ system simulator codes to accurately model system dynamics. Typically, these system simulator codes (e.g., RELAP5 ) are coupled with other codes (e.g., ADAPT, RAVEN that monitor and control the simulation. The latter codes, in particular, introduce both deterministic (e.g., system control logic, operating procedures) and stochastic (e.g., component failures, variable uncertainties) elements into the simulation. A typical DPRA analysis is performed by: 1. Sampling values of a set of parameters from the uncertainty space of interest 2. Simulating the system behavior for that specific set of parameter values 3. Analyzing the set of simulation runs 4. Visualizing the correlations between parameter values and simulation outcome Step 1 is typically performed by randomly sampling from a given distribution (i.e., Monte-Carlo) or selecting such parameter values as inputs from the user (i.e., Dynamic Event Tre

    Communication: Truncated non-bonded potentials can yield unphysical behavior in molecular dynamics simulations of interfaces

    Get PDF
    Non-bonded potentials are included in most force fields and therefore widely used in classical molecular dynamics simulations of materials and interfacial phenomena. It is commonplace to truncate these potentials for computational efficiency based on the assumption that errors are negligible for reasonable cutoffs or compensated for by adjusting other interaction parameters. Arising from a metadynamics study of the wetting transition of water on a solid substrate, we find that the influence of the cutoff is unexpectedly strong and can change the character of the wetting transition from continuous to first order by creating artificial metastable wetting states. Common cutoff corrections such as the use of a force switching function, a shifted potential, or a shifted force do not avoid this. Such a qualitative difference urges caution and suggests that using truncated non-bonded potentials can induce unphysical behavior that cannot be fully accounted for by adjusting other interaction parameters

    Dynamical Theory of Artificial Optical Magnetism Produced by Rings of Plasmonic Nanoparticles

    Get PDF
    We present a detailed analytical theory for the plasmonic nanoring configuration first proposed in [A. Alu, A. Salandrino, N. Engheta, Opt. Expr. 14, 1557 (2006)], which is shown to provide negative magnetic permeability and negative index of refraction at infrared and optical frequencies. We show analytically how the nanoring configuration may provide superior performance when compared to some other solutions for optical negative index materials, offering a more 'pure' magnetic response at these high frequencies, which is necessary for lowering the effects of radiation losses and absorption. Sensitivity to losses and the bandwidth of operation of this magnetic inclusion are also investigated in details and compared with other available setups.Comment: 34 pages, 3 figure

    Robustness and epistasis in mutation-selection models

    Full text link
    We investigate the fitness advantage associated with the robustness of a phenotype against deleterious mutations using deterministic mutation-selection models of quasispecies type equipped with a mesa shaped fitness landscape. We obtain analytic results for the robustness effect which become exact in the limit of infinite sequence length. Thereby, we are able to clarify a seeming contradiction between recent rigorous work and an earlier heuristic treatment based on a mapping to a Schr\"odinger equation. We exploit the quantum mechanical analogy to calculate a correction term for finite sequence lengths and verify our analytic results by numerical studies. In addition, we investigate the occurrence of an error threshold for a general class of epistatic landscape and show that diminishing epistasis is a necessary but not sufficient condition for error threshold behavior.Comment: 20 pages, 14 figure

    Two-point correlation properties of stochastic "cloud processes''

    Full text link
    We study how the two-point density correlation properties of a point particle distribution are modified when each particle is divided, by a stochastic process, into an equal number of identical "daughter" particles. We consider generically that there may be non-trivial correlations in the displacement fields describing the positions of the different daughters of the same "mother" particle, and then treat separately the cases in which there are, or are not, correlations also between the displacements of daughters belonging to different mothers. For both cases exact formulae are derived relating the structure factor (power spectrum) of the daughter distribution to that of the mother. These results can be considered as a generalization of the analogous equations obtained in ref. [1] (cond-mat/0409594) for the case of stochastic displacement fields applied to particle distributions. An application of the present results is that they give explicit algorithms for generating, starting from regular lattice arrays, stochastic particle distributions with an arbitrarily high degree of large-scale uniformity.Comment: 14 pages, 3 figure

    Orbifold resolutions with general profile

    Full text link
    A very general class of resolved versions of the C/Z_N, T^2/Z_N and S^1/Z_2 orbifolds is considered and the free theory of 6D chiral fermions studied on it. As the orbifold limit is taken, localized 4D chiral massless fermions are seen to arise at the fixed points. Their number, location and chirality is found to be independent on the detailed profile of the resolving space and to agree with the result of hep-th/0409229, in which a particular resolution was employed. As a consistency check of the resolution procedure, the massive equation is numerically studied. In particular, for S^1/Z_2, the "resolved" mass--spectrum and wave functions in the internal space are seen to correctly reproduce the usual orbifold ones, as the orbifold limit is taken.Comment: 28 pages, 3 figures, typos corrected, references adde

    The 2007 Provincial Election and Electoral System Referendum in Ontario

    Get PDF
    Ontario’s general election in Oct. 10, 2007, was unprecedented for several reasons. The election was held on a date fixed by legislation and not one set by the premier or his caucus, something new to Ontario and relatively new to Canadian politics. Turnout declined to 53%, the lowest ever in Ontario history. The incumbent Liberals won a second consecutive majority government, something the party had not achieved since 1937. And finally, the election featured a referendum question that asked voters in Ontario to approve reforms to the electoral system, a proposal that was overwhelmingly rejected. This article explores each of the above-stated elements as they unfolded in the election
    corecore