219 research outputs found
T-duality in the weakly curved background
We consider the closed string propagating in the weakly curved background
which consists of constant metric and Kalb-Ramond field with infinitesimally
small coordinate dependent part. We propose the procedure for constructing the
T-dual theory, performing T-duality transformations along coordinates on which
the Kalb-Ramond field depends. The obtained theory is defined in the
non-geometric double space, described by the Lagrange multiplier and
its -dual . We apply the proposed T-duality procedure to the
T-dual theory and obtain the initial one. We discuss the standard relations
between T-dual theories that the equations of motion and momenta modes of one
theory are the Bianchi identities and the winding modes of the other
Novel Branches of (0,2) Theories
We show that recently proposed linear sigma models with torsion can be
obtained from unconventional branches of conventional gauge theories. This
observation puts models with log interactions on firm footing. If non-anomalous
multiplets are integrated out, the resulting low-energy theory involves log
interactions of neutral fields. For these cases, we find a sigma model geometry
which is both non-toric and includes brane sources. These are heterotic sigma
models with branes. Surprisingly, there are massive models with compact complex
non-Kahler target spaces, which include brane/anti-brane sources. The simplest
conformal models describe wrapped heterotic NS5-branes. We present examples of
both types.Comment: 36 pages, LaTeX, 2 figures; typo in Appendix fixed; references added
and additional minor change
Supersymmetry with non-geometric fluxes, or a beta-twist in Generalized Geometry and Dirac operator
We study ten-dimensional supersymmetric vacua with NSNS non-geometric fluxes, in the framework of \beta-supergravity. We first provide expressions for the fermionic supersymmetry variations. Specifying a compactification ansatz to four dimensions, we deduce internal Killing spinor equations. These supersymmetry conditions are then reformulated in terms of pure spinors, similarly to standard supergravity vacua admitting an SU(3)xSU(3) structure in Generalized Complex Geometry. The standard d-H acting on the pure spinors is traded for a generalized Dirac operator D, depending here on the non-geometric fluxes. Rewriting it with an exponential of the bivector \beta leads us to discuss the geometrical characterisation of the vacua in terms of a \beta-twist, in analogy to the standard twist by the b-field. Thanks to D, we also propose a general expression for the superpotential to be obtained from standard supergravities or \beta-supergravity, and verify its agreement with formulas of the literature. We finally comment on the Ramond-Ramond sector, and discuss a possible relation to intermediate or dynamical SU(2) structure solutions
Membrane Sigma-Models and Quantization of Non-Geometric Flux Backgrounds
We develop quantization techniques for describing the nonassociative geometry
probed by closed strings in flat non-geometric R-flux backgrounds M. Starting
from a suitable Courant sigma-model on an open membrane with target space M,
regarded as a topological sector of closed string dynamics in R-space, we
derive a twisted Poisson sigma-model on the boundary of the membrane whose
target space is the cotangent bundle T^*M and whose quasi-Poisson structure
coincides with those previously proposed. We argue that from the membrane
perspective the path integral over multivalued closed string fields in Q-space
is equivalent to integrating over open strings in R-space. The corresponding
boundary correlation functions reproduce Kontsevich's deformation quantization
formula for the twisted Poisson manifolds. For constant R-flux, we derive
closed formulas for the corresponding nonassociative star product and its
associator, and compare them with previous proposals for a 3-product of fields
on R-space. We develop various versions of the Seiberg-Witten map which relate
our nonassociative star products to associative ones and add fluctuations to
the R-flux background. We show that the Kontsevich formula coincides with the
star product obtained by quantizing the dual of a Lie 2-algebra via convolution
in an integrating Lie 2-group associated to the T-dual doubled geometry, and
hence clarify the relation to the twisted convolution products for topological
nonassociative torus bundles. We further demonstrate how our approach leads to
a consistent quantization of Nambu-Poisson 3-brackets.Comment: 52 pages; v2: references adde
Ramond-Ramond Cohomology and O(D,D) T-duality
In the name of supersymmetric double field theory, superstring effective
actions can be reformulated into simple forms. They feature a pair of vielbeins
corresponding to the same spacetime metric, and hence enjoy double local
Lorentz symmetries. In a manifestly covariant manner --with regard to O(D,D)
T-duality, diffeomorphism, B-field gauge symmetry and the pair of local Lorentz
symmetries-- we incorporate R-R potentials into double field theory. We take
them as a single object which is in a bi-fundamental spinorial representation
of the double Lorentz groups. We identify cohomological structure relevant to
the field strength. A priori, the R-R sector as well as all the fermions are
O(D,D) singlet. Yet, gauge fixing the two vielbeins equal to each other
modifies the O(D,D) transformation rule to call for a compensating local
Lorentz rotation, such that the R-R potential may turn into an O(D,D) spinor
and T-duality can flip the chirality exchanging type IIA and IIB
supergravities.Comment: 1+37 pages, no figure; Structure reorganized, References added, To
appear in JHEP. cf. Gong Show of Strings 2012
(http://wwwth.mpp.mpg.de/members/strings/strings2012/strings_files/program/Talks/Thursday/Gongshow/Lee.pdf
Heterotic Flux Attractors
We find attractor equations describing moduli stabilization for heterotic
compactifications with generic SU(3)-structure. Complex structure and K\"ahler
moduli are treated on equal footing by using SU(3)xSU(3)-structure at
intermediate steps. All independent vacuum data, including VEVs of the
stabilized moduli, is encoded in a pair of generating functions that depend on
fluxes alone. We work out an explicit example that illustrates our methods.Comment: 37 pages, references and clarifications adde
The problematic backreaction of SUSY-breaking branes
In this paper we investigate the localisation of SUSY-breaking branes which,
in the smeared approximation, support specific non-BPS vacua. We show, for a
wide class of boundary conditions, that there is no flux vacuum when the branes
are described by a genuine delta-function. Even more, we find that the smeared
solution is the unique solution with a regular brane profile. Our setup
consists of a non-BPS AdS_7 solution in massive IIA supergravity with smeared
anti-D6-branes and fluxes T-dual to ISD fluxes in IIB supergravity.Comment: 27 pages, Latex2e, 5 figure
Duality Invariant M-theory: Gauged supergravities and Scherk-Schwarz reductions
We consider the reduction of the duality invariant approach to M-theory by a
U-duality group valued Scherk-Schwarz twist. The result is to produce
potentials for gauged supergravities that are normally associated with
non-geometric compactifications. The local symmetry reduces to gauge
transformations with the gaugings exactly matching those of the embedding
tensor approach to gauged supergravity. Importantly, this approach now includes
a nontrivial dependence of the fields on the extra coordinates of the extended
space.Comment: 22 pages Latex; v2: typos corrected and references adde
Heterotic Sigma Models with N=2 Space-Time Supersymmetry
We study the non-linear sigma model realization of a heterotic vacuum with
N=2 space-time supersymmetry. We examine the requirements of (0,2) + (0,4)
world-sheet supersymmetry and show that a geometric vacuum must be described by
a principal two-torus bundle over a K3 manifold.Comment: 20 pages, uses xy-pic; v3: typos corrected, reference added,
discussion of constraints on Hermitian form modifie
Matrix theory origins of non-geometric fluxes
We explore the origins of non-geometric fluxes within the context of M theory
described as a matrix model. Building upon compactifications of Matrix theory
on non-commutative tori and twisted tori, we formulate the conditions which
describe compactifications with non-geometric fluxes. These turn out to be
related to certain deformations of tori with non-commutative and
non-associative structures on their phase space. Quantization of flux appears
as a natural consequence of the framework and leads to the resolution of
non-associativity at the level of the unitary operators. The quantum-mechanical
nature of the model bestows an important role on the phase space. In
particular, the geometric and non-geometric fluxes exchange their properties
when going from position space to momentum space thus providing a duality among
the two. Moreover, the operations which connect solutions with different fluxes
are described and their relation to T-duality is discussed. Finally, we provide
some insights on the effective gauge theories obtained from these matrix
compactifications.Comment: 1+31 pages, reference list update
- …
