1,279 research outputs found
Experimental and theoretical studies of sequence effects on the fluctuation and melting of short DNA molecules
Understanding the melting of short DNA sequences probes DNA at the scale of
the genetic code and raises questions which are very different from those posed
by very long sequences, which have been extensively studied. We investigate
this problem by combining experiments and theory. A new experimental method
allows us to make a mapping of the opening of the guanines along the sequence
as a function of temperature. The results indicate that non-local effects may
be important in DNA because an AT-rich region is able to influence the opening
of a base pair which is about 10 base pairs away. An earlier mesoscopic model
of DNA is modified to correctly describe the time scales associated to the
opening of individual base pairs well below melting, and to properly take into
account the sequence. Using this model to analyze some characteristic sequences
for which detailed experimental data on the melting is available [Montrichok et
al. 2003 Europhys. Lett. {\bf 62} 452], we show that we have to introduce
non-local effects of AT-rich regions to get acceptable results. This brings a
second indication that the influence of these highly fluctuating regions of DNA
on their neighborhood can extend to some distance.Comment: To be published in J. Phys. Condensed Matte
Mini Max Wallpaper
Mini Max company formulated a problem for the automatic calculation of the number of wallpaper rolls necessary for decorating a room with wallpaper. The final goal is the development of a web-based calculator open for use to both Mini Max staff and the general public. We propose an approach for reducing the studied problem to the one-dimensional cutting-stock problem. We show this in details for the case of plain wallpapers as well as for the case of patterned wallpapers with straight match. The one-dimensional cutting-stock problem can be formulated as a linear integer programming problem. We develop an approach for calculating the needed number of wallpapers for relatively small problems, create an algorithm in a suitable graphical interface and make different tests. The tests show the efficiency of the proposed approach compared with the existent (available) wallpapers’ calculators
Chemical Composition and Energy Nutritional Value of the Meat of Guinea Fowls (Numidameleagris), Fattened to different Ages
The aim of the study was to investigate the chemical composition and energy content of the meat of young Guinea-fowls, with different duration of the fattening period, raised in a free-range, semi-intensive production system.
The authors establish the following data: dry matter content- from 27.08 to 28.82% in breast muscle and from 23.83 to 26.56% in thigh muscle; crude protein in dry matter –from 86.19to 93.54% in breastand from 82.02 to 87.84% in thigh muscle; crude fat in dry matter - from 5.64 to 7.58% in breast and from 9.02 to 11.05% in thigh muscles.
The average energy content in 100 g dry matter varies from 23.7 (breast muscle, 16 weeks of age) to 25.07 kJ (thigh muscle, 24 weeks of age)
On the muon neutrino mass
During the runs of the PS 179 experiment at LEAR of CERN, we photographed an
event of antiproton-Ne absorption, with a complete pi+ -> mu+ ->e+ chain. From
the vertex of the reaction a very slow energy pi+ was emitted. The pi+ decays
into a mu+ and subsequently the mu+ decays into a positron. At the first decay
vertex a muon neutrino was emitted and at the second decay vertex an electron
neutrino and a muon antineutrino. Measuring the pion and muon tracks and
applying the momentum and energy conservation and using a classical statistical
interval estimator, we obtained an experimental upper limit for the muon
neutrino mass: m_nu < 2.2 MeV at a 90% confidence level. A statistical analysis
has been performed of the factors contributing to the square value of the
neutrino mass limit.Comment: 18 pages, 5 eps figure
Properties of the Volume Operator in Loop Quantum Gravity II: Detailed Presentation
The properties of the Volume operator in Loop Quantum Gravity, as constructed
by Ashtekar and Lewandowski, are analyzed for the first time at generic
vertices of valence greater than four. The present analysis benefits from the
general simplified formula for matrix elements of the Volume operator derived
in gr-qc/0405060, making it feasible to implement it on a computer as a matrix
which is then diagonalized numerically. The resulting eigenvalues serve as a
database to investigate the spectral properties of the volume operator.
Analytical results on the spectrum at 4-valent vertices are included. This is a
companion paper to arXiv:0706.0469, providing details of the analysis presented
there.Comment: Companion to arXiv:0706.0469. Version as published in CQG in 2008.
More compact presentation. Sign factor combinatorics now much better
understood in context of oriented matroids, see arXiv:1003.2348, where also
important remarks given regarding sigma configurations. Subsequent
computations revealed some minor errors, which do not change qualitative
results but modify some numbers presented her
Modelling DNA at the mesoscale: a challenge for nonlinear science?
Invited paper, in the series "Open Problems" of NonlinearityInternational audienceWhen it is viewed at the scale of a base pair, DNA appears as a nonlinear lattice. Modelling its properties is a fascinating goal. The detailed experiments that can be performed on this system impose constraints on the models and can be used as a guide to improve them. There are nevertheless many open problems, particularly to describe DNA at the scale of a few tens of base pairs, which is relevant for many biological phenomena
CLINICAL, ELECTROENCEPHALOGRAPHIC AND RHEOENCEPHALOGRAPHIC CORRELATIONS IN RELATIVES OF STROKE PATIENTS
No abstrac
Synthesis of structurally diverse major groove DNA interstrand crosslinks using three different aldehyde precursors
DNA interstrand crosslinks (ICLs) are extremely cytotoxic lesions that block essential cellular processes, such as replication and transcription. Crosslinking agents are widely used in cancer chemotherapy and form an array of structurally diverse ICLs. Despite the clinical success of these agents, resistance of tumors to crosslinking agents, for example, through repair of these lesions by the cellular machinery remains a problem. We have previously reported the synthesis of site-specific ICLs mimicking those formed by nitrogen mustards to facilitate the studies of cellular responses to ICL formation. Here we extend these efforts and report the synthesis of structurally diverse major groove ICLs that induce severe, little or no distortion in the DNA. Our approach employs the incorporation of aldehyde precursors of different lengths into complementary strands and ICL formation using a double reductive amination with a variety of amines. Our studies provide insight into the structure and reactivity parameters of ICL formation by double reductive amination and yield a set of diverse ICLs that will be invaluable for exploring structure-activity relationships in ICL repairope
Spin physics with antiprotons
New possibilities arising from the availability at GSI of antiproton beams,
possibly polarised, are discussed. The investigation of the nucleon structure
can be boosted by accessing in Drell-Yan processes experimental asymmetries
related to cross-sections in which the parton distribution functions (PDF) only
appear, without any contribution from fragmentation functions; such processes
are not affected by the chiral suppression of the transversity function
. Spin asymmetries in hyperon production and Single Spin Asymmetries
are discussed as well, together with further items like electric and magnetic
nucleonic form factors and open charm production. Counting rates estimations
are provided for each physical case. The sketch of a possible experimental
apparatus is proposed.Comment: Presented for the proceedings of ASI "Spin and Symmetry", Prague,
July 5-10, 2004, to be published in Czech. J. Phys. 55 (2005
Transition Radiation Spectroscopy with Prototypes of the ALICE TRD
We present measurements of the transition radiation (TR) spectrum produced in
an irregular radiator at different electron momenta. The data are compared to
simulations of TR from a regular radiator.Comment: 4 pages, 5 Figures, Proceedings for "TRDs for the 3rd millennium"
(Sept. 4-7, 2003, Bari, Italy
- …
