2,770 research outputs found
Postsettlement growth of two estuarine crab species, Chasmagnathus granulata and Cyrtograpsus angulatus (Crustacea, Decapoda, Grapsidae): laboratory and field observations
The estuarine grapsid crabs Chasmagnathus granulata and Cyrtograpsus angulatus belong to the most typical and dominant inhabitants of brackish coastal lagoons in southeastern South America. In a combined laboratory and field investigation of juvenile growth, we measured the increase in body size in these species under controlled conditions as well as in field experiments (in Mar Chiquita lagoon, Argentina), seasonal changes in size frequency distribution of a natural population, and growth related changes in selected morphometric traits of male and female juveniles (relations between carapace width, carapace length, propodus height and length of the cheliped, and pleon width). At 24°C, Cy. angulatus grew faster than Ch. granulata; it reached the crab-9 instar (C9; 13 mm carapace width) after 92 days, while Ch. granulata required 107 days to reach the C8 instar (7.4 mm). At 12°C, growth ceased in both species. The pleon begins to show sexual differences in the C5 (Cy. angulatus) and C8 instar (Ch. granulata), respectively, while the chelae differentiate earlier in Ch. granulata than in Cy. angulatus (in C4 vs C6). In the field, growth was maximal in summer, and was generally faster than in laboratory cultures. However, there is great individual variability in size (about 25% even in the first crab instar) and in size increments at ecdysis, increasing throughout juvenile growth. Our data indicate that, in the field, small-scale and short-term variations in feeding conditions, temperature, and salinity account for an extremely high degree of variability in the absolute and relative rates of growth as well as in the time to sexual differentiation
Like Brother, Like Sister? The Importance of Family Background for Cognitive and Non-Cognitive Skills
This paper estimates sibling correlations in cognitive skills and non-cognitive skills to evaluate the importance of family background for skill formation. The study is based on a large representative German dataset, which includes IQ test scores and measures of personality (locus of control, reciprocity, Big Five) for brothers and sisters. Using a Restricted Maximum Likelihood (REML) model we find substantial influences of family background on the skills of both brothers and sisters. Sibling correlations of personality traits range from 0.24 to 0.59, indicating that even for the lowest estimate, one fourth of the variance can be attributed to factors shared by siblings. With one exception, all calculated sibling correlations in cognitive skills are higher than 0.50, indicating that more than half of the inequality can be explained by family characteristics. Comparing these findings to the results in the intergenerational skill transmission literature suggests that intergenerational correlations are only able to capture parts of the influence of the family on children s cognitive and non-cognitive skills. This result is in line with findings in the literature on educational and income mobility
Egg development, hatching rhythm and moult patterns in Paralomos spinosissima (Decapoda: Anomura: Paguroidea: Lithodidae) from South Georgia waters (Southern Ocean)
Larval release, hatching rhythms and moult patterns were examined in a captive population of the subantarctic lithodid, Paralomis spinosissima from the South Georgia and Shag Rocks region. Larvae hatched throughout the year with the majority of females starting to release larvae at the end of the austral summer and beginning of autumn. Larval release continued over a period of up to 9 weeks with high variability in the numbers that hatched each day. A similar seasonal pattern to hatching was evident in the moulting of females. Intermoult period for two adult females (CL = 63 and 85 mm) ranged from 894 to 1,120 days while an intermoult period for males was estimated to be in excess of 832 days. The results are consistent with other species of Paralomis and are discussed in relation to physiological and environmental adaptations to the cold-water conditions south of the Antarctic Convergence
Jupiter's visible aurora and Io footprint
Images obtained by the Galileo spacecraft's solid-state imaging (SSI) system represent the first survey of Jupiter's northern auroral emissions at visible wavelengths and on the nightside of the planet. These images captured the emissions with unprecedented spatial resolutions down to ∼26 km pixel^(−1). Four classes of emission were observed: (1) a continuous, primary arc associated with the middle/outer magnetosphere, (2) a variable secondary arc associated with the region just beyond Io's torus, (3) diffuse “polar cap” emission, and (4) a patch and tail associated with the magnetic footprint of Io. The primary arc emission occurs at an altitude 245±30 km above the 1-bar pressure level. Its horizontal width is typically a few hundred kilometers, and its total optical power output varied between ∼10^(10) and ∼10^(11) W in observations taken months apart. The location of the primary arc in planetary coordinates is similar to that on dayside images at other wavelengths and does not vary with local time. The morphology of the primary arc is not constant, changing from a multiply branched, latitudinally distributed pattern after dusk to a single, narrow arc before dawn. Emission from Io's ionospheric footprint is distinct from both the primary and secondary arcs. Measurements of its optical power output ranged from 2 to 7×10^8 W
Elizabeth Cary and Intersections of Catholicism and Gender in Early Modern England
Historians have analyzed the life of Elizabeth Cary, Lady Falkland, primarily in the context of her highly publicized conversion to Catholicism and her equally public separation from her Protestant husband, Henry Cary. Through this scrutiny, she has become one among many English Catholic recusant heroines. Literary critics, in contrast, have celebrated Cary\u27s literary corpus both for its challenge to traditional ideals of early modern women as chaste, silent, and obedient and for its reevaluation of women\u27s roles within marriage.1 To circumscribe our understandings of Cary in such ways obscures one of her greatest contributions. Elizabeth Cary, albeit unintentionally, provided an alternative model of Catholic woman hood that sought to negotiate a new balance between religion and gender, thus challenging assumptions about women\u27s roles in English Catholic communities and about the rigid character of Catholicism in the Reformation era
Laser-controlled fluorescence in two-level systems
The ability to modify the character of fluorescent emission by a laser-controlled, optically nonlinear process has recently been shown theoretically feasible, and several possible applications have already been identified. In operation, a pulse of off-resonant probe laser beam, of sufficient intensity, is applied to a system exhibiting fluorescence, during the interval of excited- state decay following the initial excitation. The result is a rate of decay that can be controllably modified, the associated changes in fluorescence behavior affording new, chemically specific information. In this paper, a two-level emission model is employed in the further analysis of this all-optical process; the results should prove especially relevant to the analysis and imaging of physical systems employing fluorescent markers, these ranging from quantum dots to green fluorescence protein. Expressions are presented for the laser-controlled fluorescence anisotropy exhibited by samples in which the fluorophores are randomly oriented. It is also shown that, in systems with suitably configured electronic levels and symmetry properties, fluorescence emission can be produced from energy levels that would normally decay nonradiatively. © 2010 American Chemical Society
Larval dispersal in a changing ocean with an emphasis on upwelling regions
Dispersal of benthic species in the sea is mediated primarily through small, vulnerable larvae that must survive minutes to months as members of the plankton community while being transported by strong, dynamic currents. As climate change alters ocean conditions, the dispersal of these larvae will be affected, with pervasive ecological and evolutionary consequences. We review the impacts of oceanic changes on larval transport, physiology, and behavior. We then discuss the implications for population connectivity and recruitment and evaluate life history strategies that will affect susceptibility to the effects of climate change on their dispersal patterns, with implications for understanding selective regimes in a future ocean. We find that physical oceanographic changes will impact dispersal by transporting larvae in different directions or inhibiting their movements while changing environmental factors, such as temperature, pH, salinity, oxygen, ultraviolet radiation, and turbidity, will affect the survival of larvae and alter their behavior. Reduced dispersal distance may make local adaptation more likely in well-connected populations with high genetic variation while reduced dispersal success will lower recruitment with implications for fishery stocks. Increased dispersal may spur adaptation by increasing genetic diversity among previously disconnected populations as well as increasing the likelihood of range expansions. We hypothesize that species with planktotrophic (feeding), calcifying, or weakly swimming larvae with specialized adult habitats will be most affected by climate change. We also propose that the adaptive value of retentive larval behaviors may decrease where transport trajectories follow changing climate envelopes and increase where transport trajectories drive larvae toward increasingly unsuitable conditions. Our holistic framework, combined with knowledge of regional ocean conditions and larval traits, can be used to produce powerful predictions of expected impacts on larval dispersal as well as the consequences for connectivity, range expansion, or recruitment. Based on our findings, we recommend that future studies take a holistic view of dispersal incorporating biological and oceanographic impacts of climate change rather than solely focusing on oceanography or physiology. Genetic and paleontological techniques can be used to examine evolutionary impacts of altered dispersal in a future ocean, while museum collections and expedition records can inform modern-day range shifts
\u3ci\u3eSimas v. Quaker Fabric Corp.\u3c/i\u3e: ERISA Preemption of Statutory Tin Parachutes
In Simas v. Quaker Fabric Corp., the First Circuit invalidated Massachusetts\u27s innovative tin parachute statute, designed to assist workers displaced by corporate takeovers, by finding it preempted by ERISA. After examining the relationship between the tin parachute and ERISA and the analysis in Simas, this Note argues that preemption was mandated neither by ERISA itself nor by decisions interpreting its preemptive reach. In light of the state interest at stake, the Simas decision is unfortunate and suggests the need for a legislative solution
Fano resonances in plasmonic core-shell particles and the Purcell effect
Despite a long history, light scattering by particles with size comparable
with the light wavelength still unveils surprising optical phenomena, and many
of them are related to the Fano effect. Originally described in the context of
atomic physics, the Fano resonance in light scattering arises from the
interference between a narrow subradiant mode and a spectrally broad radiation
line. Here, we present an overview of Fano resonances in coated spherical
scatterers within the framework of the Lorenz-Mie theory. We briefly introduce
the concept of conventional and unconventional Fano resonances in light
scattering. These resonances are associated with the interference between
electromagnetic modes excited in the particle with different or the same
multipole moment, respectively. In addition, we investigate the modification of
the spontaneous-emission rate of an optical emitter at the presence of a
plasmonic nanoshell. This modification of decay rate due to electromagnetic
environment is referred to as the Purcell effect. We analytically show that the
Purcell factor related to a dipole emitter oriented orthogonal or tangential to
the spherical surface can exhibit Fano or Lorentzian line shapes in the near
field, respectively.Comment: 28 pages, 10 figures; invited book chapter to appear in "Fano
Resonances in Optics and Microwaves: Physics and Application", Springer
Series in Optical Sciences (2018), edited by E. O. Kamenetskii, A. Sadreev,
and A. Miroshnichenk
Cooperative coupling of ultracold atoms and surface plasmons
Cooperative coupling between optical emitters and light fields is one of the
outstanding goals in quantum technology. It is both fundamentally interesting
for the extraordinary radiation properties of the participating emitters and
has many potential applications in photonics. While this goal has been achieved
using high-finesse optical cavities, cavity-free approaches that are broadband
and easy to build have attracted much attention recently. Here we demonstrate
cooperative coupling of ultracold atoms with surface plasmons propagating on a
plane gold surface. While the atoms are moving towards the surface they are
excited by an external laser pulse. Excited surface plasmons are detected via
leakage radiation into the substrate of the gold layer. A maximum Purcell
factor of is reached at an optimum distance of
from the surface. The coupling leads to the observation of
a Fano-like resonance in the spectrum.Comment: 9 pages, 4 figure
- …
