17 research outputs found
Regio- and stereoselective palladium catalyzed C(sp3)–H arylation of pyrrolidines and piperidines with C(3) directing groups
The selective synthesis of cis-3,4-disubstituted pyrrolidines and piperidines is achieved by a Pd-catalyzed C–H arylation with excellent regio- and stereo-selectivity using an aminoquinoline auxiliary at C(3). The arylation conditions are silver free, use a low catalyst loading, and employ inexpensive K2CO3 as a base. Directing group removal is accomplished under new, mild conditions to access amide, acid, ester and alcohol containing fragments and building blocks. This C–H arylation protocol enabled a short and stereocontrolled formal synthesis of (–)-paroxetine
Stereoselective palladium-catalyzed C(sp3)–H mono-arylation of piperidines and tetrahydropyrans with a C(4) directing group
A selective Pd-catalyzed C(3)–H cis-functionalization of piperidine and tetrahydropyran carboxylic acids is achieved using a C(4) aminoquinoline amide auxiliary. High mono- and cis-selectivity is attained by using mesityl carboxylic acid as an additive. Conditions are developed with significantly lower reaction temperatures (≤50 °C) than other reported heterocycle C(sp3)–H functionalization reactions, which is facilitated by a DoE optimization. A one-pot C–H functionalization-epimerization procedure provides the trans-3,4-disubstituted isomers directly. Divergent aminoquinoline removal is accomplished with the installation of carboxylic acid, alcohol, amide and nitrile functional groups. Overall fragment compounds suitable for screening are generated in 3-4 steps from readily-available heterocyclic carboxylic acids
Interplay between Ionization and Tautomerism in Bioactive β-Enamino Ester-Containing Cyclic Compounds: Study of Annulated 1,2,3,6-Tetrahydroazocine Derivatives
Depending on the chemical scaffold, the bioactive species could reflect the interplay between ionization and tautomerism, often complicated by the possibility to populate different conformational states in the case of flexible ligands. In this context, theoretical methods can be valuable to discern the role of these factors, as shown here for β-enamino esters of 1,2,3,6 tetrahydroazocino fused ring systems, some of which had proven to be suitable scaffolds for designing novel acetylcholinesterase inhibitors. The compounds investigated herein form two clusters with distinctive experimental pKa values (i.e., α,β-diesters and β-esters ranging within 6.1-7.3 and 8.2-9.0 pKa intervals, respectively), which implies a drastic difference in the most populated species at physiological conditions. While chemoinformatic tools did not provide a consistent description of the actual pKa values, the theoretical analysis performed for the protonated and neutral species of these compounds revealed a marked change in the tautomeric preference of the tetrahydroazocine moiety upon (de)protonation. Excellent agreement between calculated and experimental pKa values was found when the tautomeric preference of protonated and neutral species was considered. Overall, this study highlights the potential use of high-level computational methods to disclose the mutual influence between ionization, tautomerism and conformational preferences in multifunctional (bio)organic compounds
Chemical and structural investigation of the paroxetine-human serotonin transporter complex
Antidepressants target the serotonin transporter (SERT) by inhibiting serotonin reuptake. Structural and biochemical studies aiming to understand binding of small-molecules to conformationally dynamic transporters like SERT often require thermostabilizing mutations and antibodies to stabilize a specific conformation, leading to questions about relationships of these structures to the bonafide conformation and inhibitor binding poses of wild-type transporter. To address these concerns, we determined the structures of ∆N72/∆C13 and ts2-inactive SERT bound to paroxetine analogues using single-particle cryo-EM and x-ray crystallography, respectively. We synthesized enantiopure analogues of paroxetine containing either bromine or iodine instead of fluorine. We exploited the anomalous scattering of bromine and iodine to define the pose of these inhibitors and investigated inhibitor binding to Asn177 mutants of ts2-active SERT. These studies provide mutually consistent insights into how paroxetine and its analogues bind to the central substrate-binding site of SERT, stabilize the outward-open conformation, and inhibit serotonin transport
Transition metal-catalyzed directed C(sp3)–H functionalization of saturated heterocycles
Synthetic methods that can readily access saturated heterocycles with different substitution patterns and with control of stereo- and regiochemistry are of huge potential value in the development of new medicinal compounds. Directed C–H functionalization of simple and commercially available precursors offers the potential to prepare diverse collections of such valuable compounds that can probe the different available exit vectors from a ring system. Nonetheless, the presence of the Lewis basic heteroatoms makes this a significant challenge. This review covers recent advances in the catalytic C–H functionalization of saturated heterocycles, with a view to different heterocycles (N, O, S), substitution patterns and transformations. 1. Introduction 2 alpha-C–H Functionalization with directing group on nitrogen 3 C–H Functionalization at unactivated C(3), C(4) and C(5) positions 3.1 C–H Functionalization at C(3) with directing groups at C(2) 3.2 C–H Functionalization at C(3), C(4) and C(5): Directing groups at C(4) and C(3) 4 Transannular C–H functionalization 5 Conclusio
Interplay between Ionization and Tautomerism in Bioactive β-Enamino Ester-Containing Cyclic Compounds: Study of Annulated 1,2,3,6-Tetrahydroazocine Derivatives
Depending on the chemical scaffold, a bioactive species could reflect the interplay between ionization and tautomerism, which is often complicated by the possibility of populating different conformational states, in the case of flexible ligands. In this context, theoretical methods can be valuable to discern the role of these factors, as shown here for β-enamino esters of 1,2,3,6-tetrahydroazocino-fused ring systems, some of which had proven to be suitable scaffolds for designing novel acetylcholinesterase inhibitors. The compounds investigated herein form two clusters with distinctive experimental pKa values (i.e., α,β-diesters and β-esters ranging within 6.1-7.3 and 8.2-9.0 pKa intervals, respectively), which implies a drastic difference in the most populated species at physiological conditions. While chemoinformatic tools did not provide a consistent description of the actual pKa values, the theoretical analysis performed for the protonated and neutral species of these compounds revealed a marked change in the tautomeric preference of the tetrahydroazocine moiety upon (de)protonation. Excellent agreement between the calculated and experimental pKa values was found when the tautomeric preference of the protonated and neutral species was considered. Overall, this study highlights the potential use of high-level computational methods to disclose the mutual influence between ionization, tautomerism, and conformational preferences in multifunctional (bio)organic compounds
Ruthenium-catalysed C‒H amidation for the late-stage synthesis of PROTACs
PROteolysis TArgeting Chimeras (PROTACs) are a powerful modality in drug discovery, offering the potential to address outstanding medical challenges. However, the synthetic feasibility of PROTACs, and the empiric and complex nature of their structure-activity relationships continue to present formidable limitations. As such, modular and reliable approaches to streamline the synthesis of these compounds are highly desirable. Here, we describe a robust ruthenium-catalysed late-stage C‒H amidation strategy, to provide modular access to both fully elaborated PROTACs and drug conjugates. Using readily available dioxazolone reagents, a broad range of inherently present functional groups can guide the C–H amidation on complex bioactive molecules. High selectivity and functional group tolerance enable the late-stage installation of linkers bearing orthogonal functional handles for downstream elaboration. Finally, the single-step synthesis of PROTAC and biotin conjugates is demonstrated, showcasing the potential of this methodology to provide efficient and sustainable access to advanced therapeutics and chemical biology tools
Ruthenium-catalysed C‒H amidation for the late-stage synthesis of PROTACs
PROteolysis TArgeting Chimeras (PROTACs) are a powerful modality in drug discovery, offering the potential to address outstanding medical challenges. However, the synthetic feasibility of PROTACs, and the empiric and complex nature of their structure-activity relationships continue to present formidable limitations. As such, modular and reliable approaches to streamline the synthesis of these compounds are highly desirable. Here, we describe a robust ruthenium-catalysed late-stage C‒H amidation strategy, to provide modular access to both fully elaborated PROTACs and drug conjugates. Using readily available dioxazolone reagents, a broad range of inherently present functional groups can guide the C–H amidation on complex bioactive molecules. High selectivity and functional group tolerance enable the late-stage installation of linkers bearing orthogonal functional handles for downstream elaboration. Finally, the single-step synthesis of PROTAC and biotin conjugates is demonstrated, showcasing the potential of this methodology to provide efficient and sustainable access to advanced therapeutics and chemical biology tools.</jats:p
Interplay between Ionization and Tautomerism in Bioactive β-Enamino Ester-Containing Cyclic Compounds: Study of Annulated 1,2,3,6-Tetrahydroazocine Derivatives
Late-stage synthesis of heterobifunctional molecules for PROTAC applications via ruthenium-catalysed C‒H amidation
Abstract PROteolysis TArgeting Chimeras (PROTACs) are heterobifunctional molecules emerging as a powerful modality in drug discovery, with the potential to address outstanding medical challenges. However, the synthetic feasibility of PROTACs, and the empiric and complex nature of their structure-activity relationships continue to present formidable limitations. As such, modular and reliable approaches to streamline the synthesis of these derivatives are highly desirable. Here, we describe a robust ruthenium-catalysed late-stage C‒H amidation strategy, to access fully elaborated heterobifunctional compounds. Using readily available dioxazolone reagents, a broad range of inherently present functional groups can guide the C–H amidation on complex bioactive molecules. High selectivity and functional group tolerance enable the late-stage installation of linkers bearing orthogonal functional handles for downstream elaboration. Finally, the single-step synthesis of both CRBN and biotin conjugates is demonstrated, showcasing the potential of this methodology to provide efficient and sustainable access to advanced therapeutics and chemical biology tools
