218 research outputs found
An 82 Inclination Debris Cloud Revealed by Radar
The statistical debris measurement campaigns conducted by the Haystack Ultrawideband Satellite Imaging Radar on behalf of the NASA Orbital Debris Program Office are used to characterize the long-term behavior of the small, low Earth orbit (LEO) orbital debris environment. Recent analyses have revealed the presence of a persistent LEO small debris cloud, which has no accompanying large component, cataloged by the U.S. Space Surveillance Network. This cloud, at an inclination of approximately 82 and below 1200 km in altitude does, however, correspond to the heavily trafficked region of space that has suffered several known, accidental collisions, e.g., Cosmos 1934 and Cosmos 2251. In this paper, we describe the observed cloud and model it using the NASA Standard Satellite Breakup Model. Key features of the cloud model, including source attribution and debris mass constraints, are presented to enable further observations and characterization
Orbital Debris Quarterly News
The Indian spacecraft Microsat-R (International Designator 2019-006A, U.S. Strategic Command [USSTRATCOM] Space Surveillance Network [SSN] catalog number 43947), launched on 24 January 2019, was intentionally destroyed in a test of a ground-based, direct-ascent Anti-Satellite (ASAT) weapon system at 0640 GMT on 27 March 2019. At the time of breakup the 740 kg spacecraft was in an approximately 294 x 265 km altitude, 96.63 orbit. A total of 101 debris have entered the public satellite catalog (through object 2019-006DF), of which 49 fragments remain on-orbit as of 15 July 2019. However, over 400 fragments were initially tracked by SSN sensors and cataloging is complicated by the low altitude of the event and the concomitant rapid orbital decay. A Gabbard plot of this debris cloud is presented in the figure on page 2. A Centaur V Single-Engine Centaur (SEC) rocket variant (International Designator 2018-079B, SSN number 43652) fragmented in early April 2019. At the time of the event the stage was in an approximately 35,092 x 8526 km altitude, 12.2 orbit. This Centaur V upper stage is associated with the launch of the USA 288, or Advanced Extremely High Frequency 4 (AEHF 4), spacecraft from the (U.S.) Air Force Eastern Test Range on 17 October 2018. The cause of the event is unknown. No debris have entered the catalog at this time, but the ODQN will provide updates should they become publicly available
Orbital debris environment for spacecraft designed to operate in low Earth orbit
The orbital debris environment model is intended to be used by the spacecraft community for the design and operation of spacecraft in low Earth orbit. This environment, when combined with material-dependent impact tests and spacecraft failure analysis, is intended to be used to evaluate spacecraft vulnerability, reliability, and shielding requirements. The environment represents a compromise between existing data to measure the environment, modeling of this data to predict the future environment, the uncertainty in both measurements and modeling, and the need to describe the environment so that various options concerning spacecraft design and operations can be easily evaluated
An Analysis of Recent Major Breakups in the Low Earth Orbit Region
Of the 4 recent major breakup events, the FY-1C ASAT test and the collision between Iridium 33 and Cosmos 2251 generated the most long-term impact to the environment. About half of the fragments will still remain in orbit at least 20 years after the breakup. The A/M distribution of the Cosmos 2251 fragments is well-described by the NASA Breakup Model. Satellites made of modern materials (such as Iridium 33), equipped with large solar panels, or covered with large MLI layers (such as FY-1C) may generated significant amount of high A/M fragments upon breakup
Analysis of WFPC-2 Core Samples for MMOD Discrimination
An examination of the Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC-2) radiator assembly was conducted at NASA Goddard Space Flight Center during the summer of 2009. Immediately apparent was the predominance of impact features, identified as simple or complex craters, resident only in the thermal paint layer; similar features were observed during a prior survey of the WFPC-1 radiator. Larger impact features displayed spallation zones, darkened areas, and other features not observed in impacts onto bare surfaces. Craters were extracted by coring the radiator in the NASA Johnson Space Centers Space Exposed Hardware cleanroom and were subsequently examined using scanning electron microscopy/energy dispersive X-ray spectroscopy to determine the likely origin, e.g., micrometeoritic or orbital debris, of the impacting projectile. Recently, a selection of large cores was re-examined using a new technique developed to overcome some limitations of traditional crater imaging and analysis. This technique, motivated by thin section analysis, examines a polished, lateral surface area revealed by cross-sectioning the core sample. This paper reviews the technique, the classification rubric as extended by this technique, and results to date
Mass loading of the Earth's magnetosphere by micron size lunar ejecta. 2: Ejecta dynamics and enhanced lifetimes in the Earth's magnetosphere
Extensive studies were conducted concerning the indivdual mass, temporal and positional distribution of micron and submicron lunar ejecta existing in the Earth-Moon gravitational sphere of influence. Initial results show a direct correlation between the position of the Moon, relative to the Earth, and the percentage of lunar ejecta leaving the Moon and intercepting the magnetosphere of the Earth at the magnetopause surface. It is seen that the Lorentz Force dominates all other forces, thus suggesting that submicron dust particles might possibly be magnetically trapped in the well known radiation zones
Mass loading of the Earth's magnetosphere by micron size lunar ejecta. 1: Ejecta production and orbital dynamics in cislunar space
Particulate matter possessing lunar escape velocity sufficient to enhance the cislunar meteroid flux was investigated. While the interplanetary flux was extensively studied, lunar ejecta created by the impact of this material on the lunar surface is only now being studied. Two recently reported flux models are employed to calculate the total mass impacting the lunar surface due to sporadic meteor flux. There is ample evidence to support the contention that the sporadic interplanetary meteoroid flux enhances the meteroid flux of cislunar space through the creation of micron and submicron lunar ejecta with lunar escape velocity
Interpretation of Impact Features on the Surface of the WFPC-2 Radiator
An examination of the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC-2) radiator assembly was conducted at NASA Goddard Space Flight Center (GSFC) during the summer of 2009. Immediately apparent was the predominance of impact features resident only in the thermal paint layer; similar phenomenology was observed during a prior survey of the WFPC-1 radiator. As well, larger impact features displayed spallation zones, darkened areas, and other features not encountered in impacts onto bare surfaces. Whereas the characterization of impact features by depth and diameter on unpainted surfaces has been long established, the mitigation provided by the painted layer presented a challenge to further analysis of the WFPC-2 features; a literature search revealed no systematic characterization of the ballistic limit equations of painted or coated surfaces. In order to characterize the impactors responsible for the observed damage, an understanding of the cratering and spallation phenomenology of the painted surface was required. To address that challenge, NASA sponsored a series of hypervelocity calibration shots at the White Sands Test Facility (WSTF). This effort required the following activities: the production, painting, and artificial ageing of test coupons in a manner similar to the actual radiator; the determination of the test matrix parameters projectile diameter and material (mass density), impact velocity, and impact angle, so as to enable both an adequate characterization of the impact by projectile and impact geometry and support hydrocode modeling to fill in and extend the applicability of the calibration shots; the selection of suitable projectiles; logistics; and an analysis of feature characteristics upon return of the coupons. This paper reports the results of the test campaign and presents ballistic limit equations for painted surfaces. We also present initial results of our interpretation methodologies
- …
