2,015 research outputs found
A Monte Carlo analysis of the liquid xenon TPC as gamma ray telescope
Extensive Monte Carlo modeling of a coded aperture x ray telescope based on a high resolution liquid xenon TPC has been performed. Results on efficiency, background reduction capability and source flux sensitivity are presented. We discuss in particular the development of a reconstruction algorithm for events with multiple interaction points. From the energy and spatial information, the kinematics of Compton scattering is used to identify and reduce background events, as well as to improve the detector response in the few MeV region. Assuming a spatial resolution of 1 mm RMS and an energy resolution of 4.5 percent FWHM at 1 MeV, the algorithm is capable of reducing by an order of magnitude the background rate expected at balloon altitude, thus significantly improving the telescope sensitivity
Performance of a Large Area Avalanche Photodiode in a Liquid Xenon Ionization and Scintillation Chamber
Scintillation light produced in liquid xenon (LXe) by alpha particles,
electrons and gamma-rays was detected with a large area avalanche photodiode
(LAAPD) immersed in the liquid. The alpha scintillation yield was measured as a
function of applied electric field. We estimate the quantum efficiency of the
LAAPD to be 45%. The best energy resolution from the light measurement at zero
electric field is 7.5%(sigma) for 976 keV internal conversion electrons from
Bi-207 and 2.6%(sigma) for 5.5 MeV alpha particles from Am-241. The detector
used for these measurements was also operated as a gridded ionization chamber
to measure the charge yield. We confirm that using a LAAPD in LXe does not
introduce impurities which inhibit the drifting of free electrons.Comment: 13 pages, 8 figure
Liquid xenon time projection chamber for gamma rays in the MeV region: Development status
The feasibility of a large volume Liquid Xenon Time Projection Chamber (LXe-TPC) for three dimensional imaging and spectroscopy of cosmic gamma ray sources, was tested with a 3.5 liter prototype. The observation of induction signals produced by MeV gamma rays in liquid xenon is reported, with a good signal-to-noise ratio. The results represent the first experimental demonstration with a liquid xenon ionization chamber of a nondestructive readout of the electron image produced by point-like charges, using a sense wire configuration of the type originally proposed in 1970 by Gatti et al. An energy resolution as good as that previously measured by the millimeter size chambers, was achieved with the large prototype of 4.4 cm drift gap
MIMAC potential discovery and exclusion of neutralinos in the MSSM and NMSSM
The MIMAC project aims to provide a nominal fluorine detector for directional
detection of galactic dark matter recoil events. Its expected behavior reaches
an important part of the predicted spin dependent elastic scattering
interactions of the supersymmetric neutralino with protons. Hence, the
parameter space in the MSSM and the NMSSM models with neutralino dark matter
could be probed by such experimental efforts. In particular, a good sensitivity
to spin dependent interactions tackles parameter space regions to which the
predictions on spin independent interactions and indirect signatures are far
below current and projected experiments.Comment: Proceedings of the 3rd International conference on Directional
Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 201
Gator: a low-background counting facility at the Gran Sasso Underground Laboratory
A low-background germanium spectrometer has been installed and is being
operated in an ultra-low background shield (the Gator facility) at the Gran
Sasso underground laboratory in Italy (LNGS). With an integrated rate of ~0.16
events/min in the energy range between 100-2700 keV, the background is
comparable to those of the world's most sensitive germanium detectors. After a
detailed description of the facility, its background sources as well as the
calibration and efficiency measurements are introduced. Two independent
analysis methods are described and compared using examples from selected sample
measurements. The Gator facility is used to screen materials for XENON, GERDA,
and in the context of next-generation astroparticle physics facilities such as
DARWIN.Comment: 14 pages, 6 figures, published versio
Polaronic signature in the metallic phase of La0.7Ca0.3MnO3 films detected by scanning tunneling spectroscopy
In this work we map tunnel conductance curves with nanometric spatial
resolution, tracking polaronic quasiparticle excitations when cooling across
the insulator-to-metal transition in La0.7Ca0.3MnO3 films. In the insulating
phase the spectral signature of polarons, a depletion of conductance at low
bias flanked by peaks, is detected all over the scanned surface. These features
are still observed at the transition and persist on cooling into the metallic
phase. Polaron-binding energy maps reveal that polarons are not confined to
regions embedded in a highly-conducting matrix but are present over the whole
field of view both above and below the transition temperature.Comment: 10 pages, 4 figure
Design and Performance of the XENON10 Dark Matter Experiment
XENON10 is the first two-phase xenon time projection chamber (TPC) developed
within the XENON dark matter search program. The TPC, with an active liquid
xenon (LXe) mass of about 14 kg, was installed at the Gran Sasso underground
laboratory (LNGS) in Italy, and operated for more than one year, with excellent
stability and performance. Results from a dark matter search with XENON10 have
been published elsewhere. In this paper, we summarize the design and
performance of the detector and its subsystems, based on calibration data using
sources of gamma-rays and neutrons as well as background and Monte Carlo
simulations data. The results on the detector's energy threshold, energy and
position resolution, and overall efficiency show a performance that exceeds
design specifications, in view of the very low energy threshold achieved (<10
keVr) and the excellent energy resolution achieved by combining the ionization
and scintillation signals, detected simultaneously
Local quasiparticle density of states of superconducting SmFeAsOF single crystals: Evidence for spin-mediated pairing
We probe the local quasiparticles density-of-states in micron-sized
SmFeAsOF single-crystals by means of Scanning Tunnelling
Spectroscopy. Spectral features resemble those of cuprates, particularly a
dip-hump-like structure developed at energies larger than the gap that can be
ascribed to the coupling of quasiparticles to a collective mode, quite likely a
resonant spin mode. The energy of the collective mode revealed in our study
decreases when the pairing strength increases. Our findings support
spin-fluctuation-mediated pairing in pnictides.Comment: 11 pages, 4 figure
Holographic Josephson Junctions and Berry holonomy from D-branes
We construct a holographic model for Josephson junctions with a defect system
of a Dp brane intersecting a D(p+2) brane. In addition to providing a
geometrical picture for the holographic dual, this leads us very naturally to
suggest the possibility of non-Abelian Josephson junctions characterized in
terms of the topological properties of the branes. The difference between the
locations of the endpoints of the Dp brane on either side of the defect
translates into the phase difference of the condensate in the Josephson
junction. We also add a magnetic flux on the D(p+2) brane and allow it evolve
adiabatically along a closed curve in the space of the magnetic flux, while
generating a non-trivial Berry holonomy.Comment: 20 pages, 2 figure
Scintillation Response of Liquid Xenon to Low Energy Nuclear Recoils
Liquid Xenon (LXe) is expected to be an excellent target and detector medium
to search for dark matter in the form of Weakly Interacting Massive Particles
(WIMPs). Knowledge of LXe ionization and scintillation response to low energy
nuclear recoils expected from the scattering of WIMPs by Xe nuclei is important
for determining the sensitivity of LXe direct detection experiments. Here we
report on new measurements of the scintillation yield of Xe recoils with
kinetic energy as low as 10 keV. The dependence of the scintillation yield on
applied electric field was also measured in the range of 0 to 4 kV/cm. Results
are in good agreement with recent theoretical predictions that take into
account the effect of biexcitonic collisions in addition to the nuclear
quenching effect.Comment: 16 pages, 13 figures. Submitted to Phys. Rev.
- …
