702 research outputs found
Regular dendritic patterns induced by non-local time-periodic forcing
The dynamic response of dendritic solidification to spatially homogeneous
time-periodic forcing has been studied. Phase-field calculations performed in
two dimensions (2D) and experiments on thin (quasi 2D) liquid crystal layers
show that the frequency of dendritic side-branching can be tuned by oscillatory
pressure or heating. The sensitivity of this phenomenon to the relevant
parameters, the frequency and amplitude of the modulation, the initial
undercooling and the anisotropies of the interfacial free energy and molecule
attachment kinetics, has been explored. It has been demonstrated that besides
the side-branching mode synchronous with external forcing as emerging from the
linear Wentzel-Kramers-Brillouin analysis, modes that oscillate with higher
harmonic frequencies are also present with perceptible amplitudes.Comment: 15 pages, 23 figures, Submitted to Phys. Rev.
An open-label, phase 1 study evaluating safety, tolerability, and pharmacokinetics of linifanib (ABT-869) in Japanese patients with solid tumors
PURPOSE: This phase 1 study assessed the safety, tolerability, pharmacokinetics, and preliminary antitumor activity of linifanib in Japanese patients with advanced solid tumors. METHODS: Patients were assigned to one of four sequential cohorts (0.05, 0.10, 0.20, or 0.25 mg/kg) of oral, once-daily linifanib on a 21-day cycle. Adverse events (AEs) were assessed per common terminology criteria for adverse events v3.0; tumor responses were assessed by response evaluation criteria in solid tumors. RESULTS: Eighteen patients were enrolled. Eleven (61%) received ≥3 prior therapies. Dose-limiting toxicities were Grade 3 ALT increase (0.10 mg/kg linifanib) and Grade 1 T-wave inversion (0.25 mg/kg linifanib) requiring dose interruption for >7 days and discontinuation on day 29. The most common linifanib-related AE was hypertension. Other significant treatment-related AEs included proteinuria, fatigue, and palmar-plantar erythrodysaesthesia. Linifanib pharmacokinetics were dose-proportional across 0.10–0.25 mg/kg. Two patients (11.1%) had confirmed partial responses, 12 had a best response of stable disease (11 had stable disease for ≥12 weeks), and four patients were not evaluable due to incomplete data. Four patients (lung cancer, breast cancer, thymic cancer, sarcoma) have continued linifanib for ≥48 weeks (range, 48–96+ weeks). CONCLUSION: Linifanib was well tolerated with promising preliminary clinical activity in Japanese patients. Later-phase global studies examining linifanib efficacy will include Japanese patients
Evidence for a common progenitor of epithelial and mesenchymal components of the liver
Tissues of the adult organism maintain the homeostasis and respond to injury by means of progenitor/stem cell compartments capable to give rise to appropriate progeny. In organs composed by histotypes of different embryological origins (e.g. The liver), the tissue turnover may in theory involve different stem/precursor cells able to respond coordinately to physiological or pathological stimuli. In the liver, a progenitor cell compartment, giving rise to hepatocytes and cholangiocytes, can be activated by chronic injury inhibiting hepatocyte proliferation. The precursor compartment guaranteeing turnover of hepatic stellate cells (HSCs) (perisinusoidal cells implicated with the origin of the liver fibrosis) in adult organ is yet unveiled. We show here that epithelial and mesenchymal liver cells (hepatocytes and HSCs) may arise from a common progenitor. Sca+ murine progenitor cells were found to coexpress markers of epithelial and mesenchymal lineages and to give rise, within few generations, to cells that segregate the lineage-specific markers into two distinct subpopulations. Notably, these progenitor cells, clonally derived, when transplanted in healthy livers, were found to generate epithelial and mesenchymal liver-specific derivatives (i.e. hepatocytes and HSCs) properly integrated in the liver architecture. These evidences suggest the existence of a 'bona fide' organ-specific meso-endodermal precursor cell, thus profoundly modifying current models of adult progenitor commitment believed, so far, to be lineage-restricted. Heterotopic transplantations, which confirm the dual differentiation potentiality of those cells, indicates as tissue local cues are necessary to drive a full hepatic differentiation. These data provide first evidences for an adult stem/precursor cell capable to differentiate in both parenchymal and non-parenchymal organ-specific components and candidate the liver as the instructive site for the reservoir compartment of HSC precursors as yet non-localized in the adult. © 2013 Macmillan Publishers Limited All rights reserved
Non-classical forms of pemphigus: pemphigus herpetiformis, IgA pemphigus, paraneoplastic pemphigus and IgG/IgA pemphigus
The pemphigus group comprises the autoimmune intraepidermal blistering diseases classically divided into two major types: pemphigus vulgaris and pemphigus foliaceous. Pemphigus herpetiformis, IgA pemphigus, paraneoplastic pemphigus and IgG/IgA pemphigus are rarer forms that present some clinical, histological and immunopathological characteristics that are different from the classical types. These are reviewed in this article. Future research may help definitively to locate the position of these forms in the pemphigus group, especially with regard to pemphigus herpetiformis and the IgG/ IgA pemphigus.Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM) Dermatology DepartmentUniversidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM) Dermatology and Pathology DepartmentsUNIFESP, EPM, Dermatology DepartmentUNIFESP, EPM, Dermatology and Pathology DepartmentsSciEL
Potential Cell-Based Therapies for Irreversibly Damaged Salivary Glands and Atrophic Alveolar Bone
A microfluidics-based method for measuring neuronal activity in Drosophila chemosensory neurons
Monitoring neuronal responses to defined sensory stimuli is a powerful and widely used approach for understanding sensory coding in the nervous system. However, providing precise, stereotypic and reproducible cues while concomitantly recording neuronal activity remains technically challenging. Here we describe the fabrication and use of a microfluidics system that allows precise temporally restricted stimulation of Drosophila chemosensory neurons with an array of different chemical cues. The system can easily be combined with genetically encoded calcium sensors, and it can measure neuronal activity at single-cell resolution in larval sense organs and in the proboscis or leg of the adult fly. We describe the design of the master mold, the production of the microfluidic chip and live imaging using the calcium sensor GCaMP, expressed in distinct types of Drosophila chemosensory neurons. Fabrication of the master mold and microfluidic chips requires basic skills in photolithography and takes ~2 weeks; the same devices can be used repeatedly over several months. Flies can be prepared for measurements in minutes and imaged for up to 1 h
Are exon 19 deletions and L858R EGFR mutations in non-small-cell lung cancer clinically different?
Effective-mononuclear cell (E-MNC) therapy alleviates salivary gland damage by suppressing lymphocyte infiltration in Sjögren-like disease
Introduction: Sjögren syndrome (SS) is an autoimmune disease characterized by salivary gland (SG) destruction leading to loss of secretory function. A hallmark of the disease is the presence of focal lymphocyte infiltration in SGs, which is predominantly composed of T cells. Currently, there are no effective therapies for SS. Recently, we demonstrated that a newly developed therapy using effective-mononuclear cells (E-MNCs) improved the function of radiation-injured SGs due to anti-inflammatory and regenerative effects. In this study, we investigated whether E-MNCs could ameliorate disease development in non-obese diabetic (NOD) mice as a model for primary SS.Methods: E-MNCs were obtained from peripheral blood mononuclear cells (PBMNCs) cultured for 7 days in serum-free medium supplemented with five specific recombinant proteins (5G culture). The anti-inflammatory characteristics of E-MNCs were then analyzed using a co-culture system with CD3/CD28-stimulated PBMNCs. To evaluate the therapeutic efficacy of E-MNCs against SS onset, E-MNCs were transplanted into SGs of NOD mice. Subsequently, saliva secretion, histological, and gene expression analyses of harvested SG were performed to investigate if E-MNCs therapy delays disease development.Results: First, we characterized that both human and mouse E-MNCs exhibited induction of CD11b/CD206-positive cells (M2 macrophages) and that human E-MNCs could inhibit inflammatory gene expressions in CD3/CD28- stimulated PBMNCs. Further analyses revealed that Msr1-and galectin3-positive macrophages (immunomodulatory M2c phenotype) were specifically induced in E-MNCs of both NOD and MHC class I-matched mice. Transplanted E-MNCs induced M2 macrophages and reduced the expression of T cell-derived chemokine-related and inflammatory genes in SG tissue of NOD mice at SS-onset. Then, E-MNCs suppressed the infiltration of CD4-positive T cells and facilitated the maintenance of saliva secretion for up to 12 weeks after E-MNC administration.Discussion: Thus, the immunomodulatory actions of E-MNCs could be part of a therapeutic strategy targeting the early stage of primary SS
The identification of human aldo-keto reductase AKR7A2 as a novel cytoglobin-binding partner
Bimekizumab treatment in patients with active psoriatic arthritis and prior inadequate response to tumour necrosis factor inhibitors: 52-week safety and efficacy from the phase III BE COMPLETE study and its open-label extension BE VITAL
Objectives To assess 52-week safety and efficacy of bimekizumab in patients with active psoriatic arthritis (PsA) and prior inadequate response/intolerance to tumour necrosis factor inhibitors.
Methods Patients completing the 16-week phase III double-blind, placebo-controlled BE COMPLETE (NCT03896581) study entered the open-label extension, BE VITAL (NCT04009499). All patients in BE VITAL received 160 mg bimekizumab every 4 weeks. Safety and efficacy are reported to week 52.
Results A total of 347/400 (86.8%) patients completed week 52. To week 52, the exposure-adjusted incidence rate/100 patient-years for ≥1 treatment-emergent adverse event (TEAE) was 126.0, and was 7.0 for serious TEAEs. The most frequent TEAEs were SARS-CoV-2 (COVID-19), oral candidiasis, nasopharyngitis and urinary tract infection. All fungal infections were mild or moderate in severity and localised; two patients discontinued the study due to oral candidiasis. No cases of active tuberculosis, uveitis or inflammatory bowel disease were reported. One sudden death occurred. Sustained efficacy was observed with bimekizumab from week 16 to 52 across clinical and patient-reported outcomes. At week 52, 51.7% bimekizumab-randomised and 40.6% placebo/bimekizumab patients (receiving bimekizumab from week 16 to 52) had ≥50% improvement in the American College of Rheumatology criteria. Complete skin clearance (Psoriasis Area and Severity Index 100) was achieved by 65.9% bimekizumab and 60.2% placebo/bimekizumab patients at week 52. Minimal disease activity was achieved by 47.2% bimekizumab and 33.1% placebo/bimekizumab patients at week 52.
Conclusions Bimekizumab demonstrated a safety profile consistent with previous reports; no new safety signals were identified. Sustained efficacy was observed from week 16 to 52
- …
