2,506 research outputs found

    Skyrmion and Skyrme-Black holes in de Sitter spacetime

    Full text link
    Numerical arguments are presented for the existence of regular and black hole solutions of the Einstein-Skyrme equations with a positive cosmological constant. These classical configurations approach asymptotically the de Sitter spacetime. The main properties of the solutions and the differences with respect to the asymptotically flat ones are discussed. It particular our results suggest that, for a positive cosmological constant, the mass evaluated as timelike infinity in infinite. Special emphasis is set to De Sitter black holes Skyrmions which display two horizons.Comment: 11 pages, 4 figure

    Rotating Boson Stars and Q-Balls

    Full text link
    We consider axially symmetric, rotating boson stars. Their flat space limits represent spinning Q-balls. We discuss their properties and determine their domain of existence. Q-balls and boson stars are stationary solutions and exist only in a limited frequency range. The coupling to gravity gives rise to a spiral-like frequency dependence of the boson stars. We address the flat space limit and the limit of strong gravitational coupling. For comparison we also determine the properties of spherically symmetric Q-balls and boson stars.Comment: 22 pages, 18 figure

    AdS5_5 rotating non-Abelian black holes

    Get PDF
    We present arguments for the existence of charged, rotating black holes with equal magnitude angular momenta in d=5d=5 Einstein-Yang-Mills theory with negative cosmological constant. These solutions posses a regular horizon of spherical topology and approach asymptotically the Anti-de Sitter spacetime background. The black hole solutions have also an electric charge and a nonvanishing magnetic flux through the sphere at infinity. Different from the static case, no regular solution with a nonvanishing angular momenta is found for a vanishing event horizon radius.Comment: 14 pages, 7 figure

    Modeling planar degenerate wetting and anchoring in nematic liquid crystals

    Get PDF
    We propose a simple surface potential favoring the planar degenerate anchoring of nematic liquid crystals, i.e., the tendency of the molecules to align parallel to one another along any direction parallel to the surface. We show that, at lowest order in the tensorial Landau-de Gennes order-parameter, fourth-order terms must be included. We analyze the anchoring and wetting properties of this surface potential. In the nematic phase, we find the desired degenerate planar anchoring, with positive scalar order-parameter and some surface biaxiality. In the isotropic phase, we find, in agreement with experiments, that the wetting layer may exhibit a uniaxial ordering with negative scalar order-parameter. For large enough anchoring strength, this negative ordering transits towards the planar degenerate state

    Einstein-Yang-Mills solutions in higher dimensional de Sitter spacetime

    Get PDF
    We consider particle-like and black holes solutions of the Einstein-Yang-Mills system with positive cosmological constant in d>4 spacetime dimensions. These configurations are spherically symmetric and present a cosmological horizon for a finite value of the radial coordinate, approaching asymptotically the de Sitter background. In the usual Yang--Mills case we find that the mass of these solutions, evaluated outside the cosmological horizon at future/past infinity generically diverges for d>4. Solutions with finite mass are found by adding to the action higher order gauge field terms belonging to the Yang--Mills hierarchy. A discussion of the main properties of these solutions and their differences from those to the usual Yang-Mills model, both in four and higher dimensions is presented.Comment: 17 pages, 8 figure

    Fourier-Space Crystallography as Group Cohomology

    Full text link
    We reformulate Fourier-space crystallography in the language of cohomology of groups. Once the problem is understood as a classification of linear functions on the lattice, restricted by a particular group relation, and identified by gauge transformation, the cohomological description becomes natural. We review Fourier-space crystallography and group cohomology, quote the fact that cohomology is dual to homology, and exhibit several results, previously established for special cases or by intricate calculation, that fall immediately out of the formalism. In particular, we prove that {\it two phase functions are gauge equivalent if and only if they agree on all their gauge-invariant integral linear combinations} and show how to find all these linear combinations systematically.Comment: plain tex, 14 pages (replaced 5/8/01 to include archive preprint number for reference 22

    Probing the N = 32 shell closure below the magic proton number Z = 20: Mass measurements of the exotic isotopes 52,53K

    Get PDF
    The recently confirmed neutron-shell closure at N = 32 has been investigated for the first time below the magic proton number Z = 20 with mass measurements of the exotic isotopes 52,53K, the latter being the shortest-lived nuclide investigated at the online mass spectrometer ISOLTRAP. The resulting two-neutron separation energies reveal a 3 MeV shell gap at N = 32, slightly lower than for 52Ca, highlighting the doubly-magic nature of this nuclide. Skyrme-Hartree-Fock-Boguliubov and ab initio Gorkov-Green function calculations are challenged by the new measurements but reproduce qualitatively the observed shell effect.Comment: 5 pages, 5 figure

    Liver transplantation before 1 year of age

    Get PDF
    Since 1981, 20 infants younger than 1 year of age received 26 orthotopic liver transplants. Immunosuppression was with cyclosporine and corticosteroids. Thirteen (65%) of the reciplents were discharged from the hospital. To date, 12 (60%) of the 20 reciplents are surviving, with follow-up of 1 to 56 months (average 14 months). The 5-year acluarial survival is 53.8%. The allograft liver function in the majority of surviving infants is excellent. The predominant causes of mortality were primary nonfunction of the allograft (three patients) and sepsis (three). Major morbidity was caused by hepatic artery thrombosis (five patients), gastrointestinal complications (six), biliary tract complications (five), and bacterial and viral infections (13). Six patients underwent retransplantation; three of these six survived. Results could be improved by prevention of hepatic artery thrombosis, by decreasing the incidence of sepsis, and by procurement of more and better suited pediatric donors. © 1987 The C. V. Mosby Company
    corecore